[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[AUDITORY] Computational Audiology - New Year's Update

Dear list (and potential journal club aficionados),
Below is an update from the Computational Audiology Network. Launching a community-driven Computational Audiology journal is probably a bridge too far at this point. While a journal may not be feasible, we propose an alternative method of testing the waters by initiating a journal club within our network via The Peer Recommender Challenge! The idea is to recommend literature to your peers. We kindly invite your thoughts and feedback on this idea, see below (or this link: https://computationalaudiology.com/quarterly-update-q6-q8/#peer). Your participation in this initiative will be greatly appreciated.
Best regards,
Jan-Willem Wasmann 
Computational Audiology Network Team

Peer Recommender Challenge!

Would you benefit from an online journal club? We are excited to announce the Peer Recommender Challenge, where we invite you to share and recommend papers published between April and December 2022 relevant to our audience. A list of the papers we have compiled thus far can be found below and on the computational audiology website. To participate, kindly provide a brief and informative summary of the highlights of the paper in the comments section. Our team will review and approve each comment, and with the assistance of the advanced language model, ChatGPT, we will compile all recommendations into a cohesive narrative accompanied by relevant graphics, similar to our previous efforts in Q5. Join us in this endeavor to foster a collaborative and informed Computational Audiology community.


New year's update

In this edition, we will be covering a variety of topics, including the Peer Recommender Challenge, real meetings: virtual versus in-person, the Computational Audiology Network (CAN) online presence on LinkedIn, upcoming events in 2023, a report on the VCCA 2022 conference, tips for researchers, job opportunities, and an overview of 2022 (Q6-Q8) quarter’s publications related to computational audiology. We also would like to thank everybody who contributed this year to the VCCA and CAN.

Wishing you a happy and prosperous New Year from the field of Computational Audiology. May the advancements in technology continue to bring new solutions to hearing challenges.

Peer Recommender Challenge!

Would you benefit from an online journal club? We are excited to announce the Peer Recommender Challenge, where we invite you to share and recommend papers published between April and December 2022 relevant to our audience. A list of the papers we have compiled thus far can be found below and on the computational audiology website. To participate, kindly provide a brief and informative summary of the highlights of the paper in the comments section. Our team will review and approve each comment, and with the assistance of the advanced language model, ChatGPT, we will compile all recommendations into a cohesive narrative accompanied by relevant graphics, similar to our previous efforts in Q5. Join us in this endeavor to foster a collaborative and informed Computational Audiology community.

Real Meetings: Virtual Versus In-Person

We have recently published a blog on the topic of virtual and in-person meetings and their impact on the growth and strength of the Computational Audiology Network. Special thanks to Seba AusiliLiepollo Ntlhakana (PhD)Bill WhitmerSoner TürüdüRobert EikelboomElle O'BrienDeniz BaşkentDennis BarbourDavid Moore and Charlotte Garcia for sharing their experiences and advice on how to navigate these types of meetings.

Computational Audiology Network (CAN presence on LinkedIn)

To further expand our online presence, we have created a public company page for CAN on LinkedIn (keeping a low profile on twitter). This page will feature updates on our activities and is meant to inform and engage all stakeholders, including researchers, audiologists, patients, and (future) funders. Follow us via (https://www.linkedin.com/company/computational-audiology-network/). Please reach out to me if you would like to contribute or reply to this email). If you become a CAN member, you can easily share your research progress and achievements via our company page.

In addition, we also have a closed discussion group on LinkedIn for more in-depth conversations among peers. https://www.linkedin.com/groups/8931734/, here you can freely express your opinion and insights.


VCCA2022 Conference Report

The VCCA 2022 conference was held online by Hearing4all (University of Oldenburg and Hannover Medical School) on June 30th and July 1st. The conference featured five keynote talks, four special sessions, and over 500 registered participants, making it another successful year for the conference. Read the full conference report here.



2022 in numbers

  • >500 participants VCCA2022
  • >15.000 visitors of computationalaudiology.com
  • 5 videos released on Computational Audiology TV
  • Total number of publications in 2022
    • 6 posts
    • 81 publications found with google scholar
    • 2 repositories added to Zenodo
    • >10 tools and software packages added to the resources
    • 2 “quarterly” updates:  Q5 and Q6-Q8


Tip for researchers

If you are planning on publishing a paper related to computational audiology, consider adding the key word [Computational Audiology] to make it easier for your peers to find. The same goes for code added to GitHub or HuggingFace. In GitHub, you can make your existing repository better findable by adding a topic to your repository which acts as a ‘tag/label’. We recommend adding the topic ‘Computational Audiology’, and maybe additional label including ‘Cochlear Model’ / [specific topic] / etc to GitHub repositories you wish to share with the computational audiology community.

For finalized models and datasets, we have a Zenodo community for computational audiology. The goal of this community is to share data, code, and tools that are useful for our field and related fields such as digital hearing health care.

Job opportunities

Want to join the Deep Hearing Lab at the University of Cambridge? Or work in the Audio Algorithms team at Apple? Check out these and other job openings in computational audiology in academia and industry.



We would like to thank everybody who contributed to the websiteshared software or datasets, or presented at the VCCA2022. A special thanks to: Giovanni  Di Liberto, Laurel H. Carney, Inga Holube, Richard F. Lyon, Alessia Paglialonga, Marta Lenatti, Piotr Majdak, Clara Hollomey, and Raul Sanchez-Lopez for making software and data freely available on our resources page.

Upcoming Events 

Recent publications related to computational audiology

Are there any papers you would like to recommend? Please join our peer recommender challenge! Below you can find a we have collected so far. Please write a short description with the highlights why you recommend the paper in the comments on the CAN web page. We will approve the comment and use ChatGPT to compile all comments into a running story including graphics as we did before for the papers published in Q5.   

It is nice to see so many VCCA talks turn into papers and pre-prints. Below publications were found using  [(Computational Audiology) OR ((Machine Learning) AND audiology)] in Google Scholar.  Did we miss a publication? Please send your suggestion to resources@xxxxxxxxxxxxxxxxxxxxxxxxxx. If you are going to publish a paper related to computational audiology, consider adding as key word [Computational Audiology’] to make your paper better findable for your peers and us.

Alohali, Y. A., Abdelsamad, Y., Mesallam, T., Almuhawas, F., Hagr, A., & Fayed, M. S. (2022). Predicting electrode array impedance after one month from cochlear implantation surgery (arXiv:2205.10021). arXiv. http://arxiv.org/abs/2205.10021

Alonso-Valerdi, L. M. (2022). Analysis of Electrophysiological Activity of the Nervous System: Towards Neural Engineering Applications. In Biometry. CRC Press.

Alonso-Valerdi, L. M., Torres-Torres, A. S., Corona-González, C. E., & Ibarra-Zárate, D. I. (2022). Clustering approach based on psychometrics and auditory event-related potentials to evaluate acoustic therapy effects. Biomedical Signal Processing and Control, 76, 103719. https://doi.org/10.1016/j.bspc.2022.103719

Bastas, G., Kaliakatsos-Papakostas, M., Paraskevopoulos, G., Kaplanoglou, P., Christantonis, K., Tsioustas, C., Mastrogiannopoulos, D., Panga, D., Fotinea, E., Katsamanis, A., Katsouros, V., Diamantaras, K., & Maragos, P. (2022). Towards a DHH Accessible Theater: Real-Time Synchronization of Subtitles and Sign Language Videos with ASR and NLP Solutions. https://doi.org/10.1145/3529190.3534770

Bellandi, V. (2023). A Big Data Infrastructure in Support of Healthy and Independent Living: A Real Case Application. In C. P. Lim, A. Vaidya, Y.-W. Chen, V. Jain, & L. C. Jain (Eds.), Artificial Intelligence and Machine Learning for Healthcare: Vol. 2: Emerging Methodologies and Trends (pp. 95–134). Springer International Publishing. https://doi.org/10.1007/978-3-031-11170-9_5

Borole, Y. D., & Raut, R. (2022). Machine‐Learning Techniques for Deaf People. Machine Learning Algorithms for Signal and Image Processing, 201–217.

Cantu, M. A., & Hohmann, V. (2022). Enhancement of Hearing Aid Processing Via Spatial Spectro-Temporal Post-Filtering with a Prototype Eyeglass-Integrated Array. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), 1–5. https://doi.org/10.1109/IWAENC53105.2022.9914762

Casolani, C., Harte, J. M., & Epp, B. (2022). Categorization of tinnitus listeners with a focus on cochlear synaptopathy. PLOS ONE, 17(12), e0277023. https://doi.org/10.1371/journal.pone.0277023

Chan, J., Glenn, A., Itani, M., Mancl, L. R., Gallagher, E., Bly, R., Patel, S., & Gollakota, S. (2022). Wireless earbuds for low-cost hearing screening (arXiv:2212.05435). arXiv. http://arxiv.org/abs/2212.05435

Diehl, P. U., Singer, Y., Zilly, H., Schönfeld, U., Meyer-Rachner, P., Berry, M., Sprekeler, H., Sprengel, E., Pudszuhn, A., & Hofmann, V. M. (2022). Restoring speech intelligibility for hearing aid users with deep learning (arXiv:2206.11567). arXiv. http://arxiv.org/abs/2206.11567

Drakopoulos, F., & Verhulst, S. (2022). A Differentiable Optimisation Framework for The Design of Individualised DNN-based Hearing-Aid Strategies. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 351–355. https://doi.org/10.1109/ICASSP43922.2022.9747683

EBSCOhost | 156790805 | Auditory Evoked Potential-Based Hearing Loss Level Recognition Using Fully Convolutional Neural Networks. (n.d.). Retrieved October 18, 2022.

Fawcett, T. J., Longenecker, R. J., Brunelle, D. L., Berger, J. I., Wallace, M. N., Galazyuk, A. V., Rosen, M. J., Salvi, R. J., & Walton, J. P. (2023). Universal automated classification of the acoustic startle reflex using machine learning. Hearing Research, 428, 108667. https://doi.org/10.1016/j.heares.2022.108667

Guiraud, P., Moore, A. H., Vos, R. R., Naylor, P. A., & Brookes, M. (2022). Machine Learning for Parameter Estimation in the MBSTOI Binaural Intelligibility Metric. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), 1–5. https://doi.org/10.1109/IWAENC53105.2022.9914725

Haglund, A. (n.d.). Artificial Intelligence for Sign Language Recognition and Translation. 47.

Harris, K. C., & Bao, J. (2022). Optimizing non-invasive functional markers for cochlear deafferentation based on electrocochleography and auditory brainstem responses. The Journal of the Acoustical Society of America, 151(4), 2802–2808. https://doi.org/10.1121/10.0010317

Investigations on the Deep Learning Based Speech Enhancement Algorithms for Hearing-Impaired Population—ProQuest. (n.d.). Retrieved October 18, 2022.

Jeng, F.-C., & Jeng, Y.-S. (2022). Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial. Seminars in Hearing, 43(3), 251–274. https://doi.org/10.1055/s-0042-1756219

Jeng, F.-C., Lin, T.-H., Hart, B. N., Montgomery-Reagan, K., & McDonald, K. (2022). Non-negative matrix factorization improves the efficiency of recording frequency-following responses in normal-hearing adults and neonates. International Journal of Audiology, 0(0), 1–11. https://doi.org/10.1080/14992027.2022.2071345

Karbasi, M., & Kolossa, D. (2022). ASR-based speech intelligibility prediction: A review. Hearing Research, 108606. https://doi.org/10.1016/j.heares.2022.108606

Kassjański, M., Kulawiak, M., & Przewoźny, T. (2022). Development of an AI-based audiogram classification method for patient referral. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), 163–168. https://doi.org/10.15439/2022F66

Law, B. M. (2022). Reimagining the Hearing Aid in an OTC Marketplace. Leader Live. https://leader.pubs.asha.org/do/10.1044/leader.FTR1.27112022.aud-otcs-future.32/full/

Lenatti, M., Moreno, -Sánchez Pedro A., Polo, E. M., Mollura, M., Barbieri, R., & Paglialonga, A. (2022). Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test. American Journal of Audiology, 31(3S), 961–979. https://doi.org/10.1044/2022_AJA-21-00194

Liu, Z., Li, Y., Yao, L., Monaghan, J. J. M., & McAlpine, D. (2022). Disentangled and Side-aware Unsupervised Domain Adaptation for Cross-dataset Subjective Tinnitus Diagnosis (arXiv:2205.03230). arXiv. http://arxiv.org/abs/2205.03230

López-Caballero, F., Coffman, B., Seebold, D., Teichert, T., & Salisbury, D. F. (n.d.-a). Intensity and inter-stimulus-interval effects on human middle- and long-latency auditory evoked potentials in an unpredictable auditory context. Psychophysiology, n/a(n/a), e14217. https://doi.org/10.1111/psyp.14217

Mondol, S. I. M. M. R., Kim, H. J., Kim, K. S., & Lee, S. (2022a). Machine Learning-Based Hearing Aid Fitting Personalization Using Clinical Fitting Data. Journal of Healthcare Engineering, 2022, e1667672. https://doi.org/10.1155/2022/1667672

Müller, M., Jiang, Z., Moryossef, A., Rios, A., & Ebling, S. (2022). Considerations for meaningful sign language machine translation based on glosses (arXiv:2211.15464). arXiv. http://arxiv.org/abs/2211.15464

Neidhardt, A., Schneiderwind, C., & Klein, F. (2022). Perceptual Matching of Room Acoustics for Auditory Augmented Reality in Small Rooms—Literature Review and Theoretical Framework. Trends in Hearing, 26, 23312165221092920. https://doi.org/10.1177/23312165221092919

Orduña-Bustamante, F., Padilla-Ortiz, A. L., & Mena, C. (2023). Assessing the benefits of virtual speaker lateralization for binaural speech intelligibility over the Internet. Applied Acoustics, 202, 109146. https://doi.org/10.1016/j.apacoust.2022.109146


Pai, K. V., & Thilagam, P. S. (2022). Hearing Loss Prediction using Machine Learning Approaches: Contributions, Limitations and Issues. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 1–7. https://doi.org/10.1109/GCAT55367.2022.9972110

Ramos-de-Miguel, Á., Escobar, J. M., Greiner, D., Benítez, D., Rodríguez, E., Oliver, A., Hernández, M., & Ramos-Macías, Á. (2022). A phenomenological computational model of the evoked action potential fitted to human cochlear implant responses. PLOS Computational Biology, 18(5), e1010134. https://doi.org/10.1371/journal.pcbi.1010134

Rennies, J., Röttges, S., Huber, R., Hauth, C. F., & Brand, T. (2022). A joint framework for blind prediction of binaural speech intelligibility and perceived listening effort. Hearing Research, 108598. https://doi.org/10.1016/j.heares.2022.108598

Riojas, K. E., Bruns, T. L., Granna, J., Webster, R. J., & Labadie, R. F. (2022). Robotic pullback technique of a precurved cochlear-implant electrode array using real-time impedance sensing feedback. International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/s11548-022-02772-3

Sandström, J., Myburgh, H., Laurent, C., Swanepoel, D. W., & Lundberg, T. (2022). A Machine Learning Approach to Screen for Otitis Media Using Digital Otoscope Images Labelled by an Expert Panel. Diagnostics, 12(6), Article 6. https://doi.org/10.3390/diagnostics12061318

Schmitt, M. (n.d.). Bag-of-Words Representations for Computer Audition. 265.

Schröter, H., Escalante-B., A. N., Rosenkranz, T., & Maier, A. (2022). DeepFilterNet2: Towards Real-Time Speech Enhancement on Embedded Devices for Full-Band Audio (arXiv:2205.05474). arXiv. http://arxiv.org/abs/2205.05474

Schurzig, D., Repp, F., Timm, M. E., Batsoulis, C., Lenarz, T., & Kral, A. (2023). Virtual cochlear implantation for personalized rehabilitation of profound hearing loss. Hearing Research, 429, 108687. https://doi.org/10.1016/j.heares.2022.108687

Sivaraman, A., & Kim, M. (2022). Efficient Personalized Speech Enhancement through Self-Supervised Learning. IEEE Journal of Selected Topics in Signal Processing, 1–15. https://doi.org/10.1109/JSTSP.2022.3181782

Smith, S. (2022). Translational Applications of Machine Learning in Auditory Electrophysiology. Seminars in Hearing, 43(3), 240–250. https://doi.org/10.1055/s-0042-1756166

Souffi, S., Varnet, L., Zaidi, M., Bathellier, B., Huetz, C., & Edeline, J.-M. (2023). Reduction in sound discrimination in noise is related to envelope similarity and not to a decrease in envelope tracking abilities. The Journal of Physiology, 601(1), 123–149. https://doi.org/10.1113/JP283526

Svec, A., & Morgan, S. D. (2022). Virtual audiology education tools: A survey of faculty, graduate students, and undergraduate students. The Journal of the Acoustical Society of America, 151(5), 3234–3238. https://doi.org/10.1121/10.0010530

Taylor, K., & Sheikh, W. (2022). Automated Hearing Impairment Diagnosis Using Machine Learning. 2022 Intermountain Engineering, Technology and Computing (IETC), 1–6. https://doi.org/10.1109/IETC54973.2022.9796707

Use Brain-Like Audio Features to Improve Speech Recognition Performance—ProQuest. (n.d.). Retrieved October 18, 2022.

Wathour, J., Govaerts, P. J., Derue, L., Vanderbemden, S., Huaux, H., Lacroix, E., & Deggouj, N. (n.d.). Prospective Comparison Between Manual and Computer-Assisted (FOX) Cochlear Implant Fitting in Newly Implanted Patients. Ear and Hearing, 10.1097/AUD.0000000000001314. https://doi.org/10.1097/AUD.0000000000001314

Wijewickrema, S., Bester, C., Gerard, J.-M., Collins, A., & O’Leary, S. (2022). Automatic analysis of cochlear response using electrocochleography signals during cochlear implant surgery. PLOS ONE, 17(7), e0269187. https://doi.org/10.1371/journal.pone.0269187

Zhong, L., Ricketts, T. A., Roberts, R. A., & Picou, E. M. (n.d.). Benefits of Text Supplementation on Sentence Recognition and Subjective Ratings With and Without Facial Cues for Listeners With Normal Hearing. Ear and Hearing, 10.1097/AUD.0000000000001316. https://doi.org/10.1097/AUD.0000000000001316

Last edited January 13.


Scan me!

You received this message because you attended VCCA2022, VCCA2021, VCCA2020, or subscribed to the computationalaudiology.com mailings, below are options to opt-out from this mailing list.

Copyright © 2023 Computational Audiology, All rights reserved.
You are receiving this email because you opted in via our website.

Our mailing address is:
Computational Audiology
Postbus 9101,
Nijmegen, 6500 HB

Add us to your address book

Want to change how you receive these emails?
You can update your preferences or unsubscribe from this list.

Email Marketing Powered by Mailchimp

De informatie in dit bericht is uitsluitend bestemd voor de geadresseerde. Aan dit bericht en de bijlagen kunnen geen rechten worden ontleend. Heeft u deze e-mail onbedoeld ontvangen? Dan verzoeken wij u het te vernietigen en de afzender te informeren. Openbaar maken, kopiëren en verspreiden van deze e-mail of informatie uit deze e-mail is alleen toegestaan met voorafgaande schriftelijke toestemming van de afzender. Het Radboudumc staat geregistreerd bij de Kamer van Koophandel in het handelsregister onder nummer 80262783.

The content of this message is intended solely for the addressee. No rights can be derived from this message or its attachments. If you are not the intended recipient, we kindly request you to delete the message and inform the sender. It is strictly prohibited to disclose, copy or distribute this email or the information inside it, without a written consent from the sender. Radboud university medical center is registered with the Dutch Chamber of Commerce trade register with number 80262783.