Subject: [AUDITORY] FW: PhD opportunity at Centre for Digital Music From: Mark Sandler <mark.sandler@xxxxxxxx> Date: Tue, 14 Jan 2025 10:24:50 +0000--_000_DU0PR07MB86195243B811085E2BD782A0BB182DU0PR07MB8619eurp_ Content-Type: text/plain; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable This is an updated posting: the deadline is approaching. Understanding the learning dynamics of Neural Audio models using Linear Alg= ebra Since around 2016 most research in Digital Music and Digital Audio has adop= ted Deep Learning techniques. These have brought important advances in perf= ormance in applications like Music Source Separation, Automatic Music Trans= cription, Timbre Transfer and so on. This is good, but on the downside, the= models get larger, they consume increasingly large amounts of power for tr= aining and inference, require more data and become less understandable and = explainable. These are the issues that underpin the research in this PhD. A fundamental building block in Deep Learning models is Matrix (or Linear) = Algebra. Through training, the matrix that represents each layer is progres= sively modified to reduce the error between a predicted value and the train= ing data. By examining what happens to these matrices during training, it i= s possible to engineer them to learn faster and more efficiently, as well a= s to build DL models that are more compact. Here we turn to Low Rank matric= es: we wish to explore what happens when Low Rank is imposed as a training = constraint in Neural Audio models. Is the model better trained, or not? Is = the model easier and cheaper to train, or not? Early results in non-audio/m= usic applications show that they are better trained and they are cheaper to= train. This work needs developing further for this PhD. Research will start with Music Source Separation, exploring the learning dy= namics of established models like DeMucs. It will then use the knowledge of= these dynamics to intelligently prune the models using the Low Rank approa= ch above [1]. This will speed up the learning and inference and improve pe= rformance. Next, the work could shift to look at other Neural Audio models = and applications or could become more immersed in field of Mechanistic Inte= rpretability, [2], to reveal the hidden, innermost structures that emerge w= ithin trained Neural Networks. Other lines of enquiry could include the tra= de-off between data set size (for training) vs the Ideal Rank of the variou= s layers in the model. Again, early results surprisingly suggest that Low R= ank layers can be trained with less data! Candidates will have excellent background in Linear Algebra (eg Eigenvector= s, Singular Value Decomposition, Tensor Analysis) as well as strong interes= t in some aspect of music or audio. They will also need background in Deep = Learning and a sound knowledge of appropriate programming tools. Knowledge = of Mathematica and the Wolfram Language would be a bonus. You will need a s= trong undergraduate degree and preferably a Masters degree to a high level. Please note that a studentship is only available for those qualifying for C= hina Scholarship Council awards or those qualifying for our faculty=92s S&E= Doctoral Research Studentships for Underrepresented Groups . Self-funded c= andidates are also welcome. Full application guidelines can be found here: https://www.c4dm.eecs.qmul.ac.uk/news/2024-11-12.PhD-call-2025/ For further details of this research topic, contact Mark Sandler (mark.sand= lerl@xxxxxxxx<mailto:mark.sandlerl@xxxxxxxx>) by email. [1] B. Bermeitinger, T. Hrycej, and S. Handschuh, =91Singular Value Decompo= sition and Neural Networks=92, Jun. 2019. doi: 10.1007/978-3-030-30484-3_13= <https://doi.org/10.1007/978-3-030-30484-3_13>. [2] N. Cammarata et al., =91Thread: Circuits=92, Distill, vol. 5, no. 3, p.= e24, Mar. 2020, doi: 10.23915/distill.00024<https://doi.org/10.23915/disti= ll.00024>. [3] V. S. Paul and P. A. Nelson, =91Matrix analysis for fast learning of ne= ural networks with application to the classification of acoustic spectra=92= , The Journal of the Acoustical Society of America, vol. 149, no. 6, pp. 41= 19=964133, Jun. 2021, doi: 10.1121/10.0005126<https://doi.org/10.1121/10.00= 05126>. -- Please note I work part time Monday - Thursday so there may be a delay to m= y email response. professor mark sandler, FREng, CEng, FIEEE, FAES, FIET director of the centre for digital music (c4dm) school of electronic engineering and computer science, queen mary universit= y of london mark.sandler@xxxxxxxx<mailto:mark.sandler@xxxxxxxx> | +44 (0)20 7882 76= 80 --_000_DU0PR07MB86195243B811085E2BD782A0BB182DU0PR07MB8619eurp_ Content-Type: text/html; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable <html xmlns:o=3D"urn:schemas-microsoft-com:office:office" xmlns:w=3D"urn:sc= hemas-microsoft-com:office:word" xmlns:m=3D"http://schemas.microsoft.com/of= fice/2004/12/omml" xmlns=3D"http://www.w3.org/TR/REC-html40"> <head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3DWindows-1= 252"> <meta name=3D"Generator" content=3D"Microsoft Word 15 (filtered medium)"> <style><!-- /* Font Definitions */ @xxxxxxxx {font-family:Helvetica; panose-1:0 0 0 0 0 0 0 0 0 0;} @xxxxxxxx {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4;} @xxxxxxxx {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4;} @xxxxxxxx {font-family:Aptos; panose-1:2 11 0 4 2 2 2 2 2 4;} @xxxxxxxx {font-family:"Liberation Serif"; panose-1:2 11 6 4 2 2 2 2 2 4;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm; font-size:10.0pt; font-family:"Aptos",sans-serif;} a:link, span.MsoHyperlink {mso-style-priority:99; color:#467886; text-decoration:underline;} p.standard, li.standard, div.standard {mso-style-name:standard; margin:0cm; text-autospace:ideograph-other; font-size:10.0pt; font-family:"Liberation Serif",serif;} .MsoChpDefault {mso-style-type:export-only; font-size:10.0pt; mso-ligatures:none;} @xxxxxxxx WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt;} div.WordSection1 {page:WordSection1;} --></style> </head> <body lang=3D"en-001" link=3D"#467886" vlink=3D"#96607D" style=3D"word-wrap= :break-word"> <div class=3D"WordSection1"> <div id=3D"mail-editor-reference-message-container"> <div> <div> <div> <p class=3D"standard"><i><span lang=3D"EN-GB" style=3D"font-size:12.0pt;fon= t-family:Helvetica">This is an updated posting: the deadline is approaching= . </span></i><span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:16.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><b><span lang=3D"EN-GB" style=3D"font-size:14.0pt;fon= t-family:Helvetica">Understanding the learning dynamics of Neural Audio mod= els using Linear Algebra</span></b><span style=3D"font-size:12.0pt"><o:p></= o:p></span></p> <p class=3D"standard"><b><span lang=3D"EN-GB" style=3D"font-size:12.0pt;fon= t-family:Helvetica"> </span></b><span style=3D"font-size:12.0pt"><o:p>= </o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">Since around 2016 most research in Digital Music and Digit= al Audio has adopted Deep Learning techniques. These have brought important= advances in performance in applications like Music Source Separation, Automatic Music Transcription, Timbre Transf= er and so on. This is good, but on the downside, the models get larger, the= y consume increasingly large amounts of power for training and inference, r= equire more data and become less understandable and explainable. These are the issues that underpin the res= earch in this PhD.</span><span style=3D"font-size:12.0pt"><o:p></o:p></span= ></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">A fundamental building block in Deep Learning models is Ma= trix (or Linear) Algebra. Through training, the matrix that represents each= layer is progressively modified to reduce the error between a predicted value and the training data. By examining wh= at happens to these matrices <i>during</i> training, it is possible to engineer them to learn faster and= more efficiently, as well as to build DL models that are more compact. Her= e we turn to Low Rank matrices: we wish to explore what happens when Low Ra= nk is imposed as a training constraint in Neural Audio models. Is the model better trained, or not? Is the model = easier and cheaper to train, or not? Early results in non-audio/music appli= cations show that they <u>are</u> better trained and they <u>are</u> cheaper to train. This work n= eeds developing further for this PhD.</span><span style=3D"font-size:12.0pt= "><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">Research will start with Music Source Separation, explorin= g the learning dynamics of established models like DeMucs. It will then use= the knowledge of these dynamics to intelligently prune the models using the Low Rank approach above [1]. This will sp= eed up the learning and inference and improve performance. Next, the work c= ould shift to look at other Neural Audio models and applications or could b= ecome more immersed in field of Mechanistic Interpretability, [2], to reveal the hidden, innermost structures that eme= rge within trained Neural Networks. Other lines of enquiry could include th= e trade-off between data set size (for training) vs the Ideal Rank of the v= arious layers in the model. Again, early results surprisingly suggest that Low Rank layers can be trained wit= h less data!</span><span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">Candidates will have excellent background in Linear Algebr= a (eg Eigenvectors, Singular Value Decomposition, Tensor Analysis) as well = as strong interest in some aspect of music or audio. They will also need background in Deep Learning and a sound know= ledge of appropriate programming tools. Knowledge of Mathematica and the Wo= lfram Language would be a bonus. You will need a strong undergraduate degre= e and preferably a Masters degree to a high level.</span><span style=3D"font-size:12.0pt"><o:p></o:p></span>= </p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><i><span lang=3D"EN-GB" style=3D"font-size:11.0pt;fon= t-family:Helvetica">Please note that a studentship is only available for th= ose qualifying for China Scholarship Council awards or those qualifying for= our faculty=92s </span></i><i><span style=3D"font-size:11.0pt;font-family:Helvetica">S&= E Doctoral Research Studentships for Underrepresented Groups </span></= i><i><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-family:Helvetica">= . Self-funded candidates are also welcome.</span></i><span style=3D"font-si= ze:12.0pt"><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">Full application guidelines can be found here:</span><span= style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-size:11.0pt;color:#212121"> = ;</span><span style=3D"font-size:12.0pt"><a href=3D"https://www.c4dm.eecs.q= mul.ac.uk/news/2024-11-12.PhD-call-2025/" title=3D"https://www.c4dm.eecs.qm= ul.ac.uk/news/2024-11-12.PhD-call-2025/"><span style=3D"font-size:11.0pt;co= lor:#0078D7">https://www.c4dm.eecs.qmul.ac.uk/news/2024-11-12.PhD-call-2025= /</span></a><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-f= amily:Helvetica">For further details of this research topic, contact Mark S= andler </span><span lang=3D"EN-GB" style=3D"font-size:12.0pt;font-family:Helvetica= ">(<a href=3D"mailto:mark.sandlerl@xxxxxxxx">mark.sandlerl@xxxxxxxx</a>= ) </span><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-family:Helvetica= ">by email.</span><span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"standard"><span lang=3D"EN-GB" style=3D"font-size:12.0pt;font-f= amily:Helvetica"> </span><span style=3D"font-size:12.0pt"><o:p></o:p><= /span></p> <p class=3D"MsoNormal"><span style=3D"font-family:Helvetica">[1] B. Bermeit= inger, T. Hrycej, and S. Handschuh, =91Singular Value Decomposition and Neu= ral Networks=92, Jun. 2019. doi: </span><span style=3D"font-size:12.0pt"><a href=3D"https://doi.org/10.1007/= 978-3-030-30484-3_13"><span style=3D"font-size:10.0pt;font-family:Helvetica= ">10.1007/978-3-030-30484-3_13</span></a></span><span style=3D"font-family:= Helvetica">.</span><span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-family:Helvetica">[2] N. Cammara= ta <i>et al.</i>, =91Thread: Circuits=92, <i>Distill</i>, vol. 5, no. 3, p. e24, Mar. 2020, doi: </span><span style= =3D"font-size:12.0pt"><a href=3D"https://doi.org/10.23915/distill.00024"><s= pan style=3D"font-size:10.0pt;font-family:Helvetica">10.23915/distill.00024= </span></a></span><span style=3D"font-family:Helvetica">.</span><span style= =3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-family:Helvetica">[3] V. S. Paul= and P. A. Nelson, =91Matrix analysis for fast learning of neural networks = with application to the classification of acoustic spectra=92, <i>The Journal of the Acoustical Society of America</i>, vol. 149, no. 6, p= p. 4119=964133, Jun. 2021, doi: </span><span style=3D"font-size:12.0pt"><a href=3D"https://doi.org/10.1121/= 10.0005126"><span style=3D"font-size:10.0pt;font-family:Helvetica">10.1121/= 10.0005126</span></a></span><span style=3D"font-family:Helvetica">.</span><= span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-family:Helvetica"> </span><= span style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-size:11.0pt"> </span><span = style=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><span style=3D"font-size:11.0pt"> </span><span = style=3D"font-size:12.0pt"><o:p></o:p></span></p> <div> <div> <p class=3D"MsoNormal"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-= family:"Calibri",sans-serif;color:black">-- </span><span sty= le=3D"font-size:12.0pt"><o:p></o:p></span></p> <p class=3D"MsoNormal"><b><span lang=3D"EN-GB" style=3D"font-size:11.0pt;fo= nt-family:"Calibri",sans-serif;color:black">Please note I work pa= rt time Monday - Thursday so there may be a delay to my email res= ponse. </span></b><span style=3D"font-size:12.0pt"><o:p></o:p></span><= /p> <p class=3D"MsoNormal"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-= family:"Calibri",sans-serif;color:black"><br> professor mark sandler, FREng, CEng, FIEEE, FAES, FIET<br> director of the centre for digital music (c4dm)<br> </span><span lang=3D"EN-GB" style=3D"font-size:7.5pt;font-family:"Cali= bri",sans-serif;color:black"><br> school of electronic engineering and computer science, queen mary= university of london<br> </span><span style=3D"font-size:12.0pt"><a href=3D"mailto:mark.sandler@xxxxxxxx= .ac.uk" title=3D"mailto:mark.sandler@xxxxxxxx"><span lang=3D"EN-GB" style= =3D"font-size:7.5pt;font-family:"Calibri",sans-serif;color:#0563C= 1">mark.sandler@xxxxxxxx</span></a></span><span lang=3D"EN-GB" style=3D"f= ont-size:7.5pt;font-family:"Calibri",sans-serif;color:black">&nbs= p;| +44 (0)20 7882 7680 </span><span style=3D"font-size:12.0pt"><o:p></o:p></span>= </p> <p class=3D"MsoNormal"><span lang=3D"EN-GB" style=3D"font-size:11.0pt;font-= family:"Calibri",sans-serif;color:black"> </span><span style= =3D"font-size:12.0pt"><o:p></o:p></span></p> </div> </div> <p class=3D"MsoNormal"><span style=3D"font-size:12.0pt"> <o:p></o:p></= span></p> </div> </div> </div> </div> </div> </body> </html> --_000_DU0PR07MB86195243B811085E2BD782A0BB182DU0PR07MB8619eurp_--