Subject: Post-doc vacancy: binaural speech enhancement for hearing aids From: Stuart Rosen <s.rosen@xxxxxxxx> Date: Tue, 7 Jul 2015 16:20:30 +0100 List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>--------------080304030300090101060600 Content-Type: text/plain; charset="windows-1252"; format=flowed Content-Transfer-Encoding: 7bit We have an open 2-year post-doc position to work on an EPSRC-funded project on binaural speech enhancement for hearing aids. Further information is enclosed and full details are at: http://www.jobs.ac.uk/job/ALM808/research-associate/ The closing date is 29 July 2015. If you are interested, please contact: mike.brookes@xxxxxxxx Mike Brookes, Reader in Signal Processing, EEE Dept, Imperial College, London SW7 2BT, UK Tel: +44 (0) 20-7594-6165 Fax: +44 (0) 20-7823-8125 Email: mike.brookes@xxxxxxxx WWW: http://www.ee.imperial.ac.uk/hp/staff/dmb/dmb.html --------------080304030300090101060600 Content-Type: application/vnd.openxmlformats-officedocument.wordprocessingml.document; name="EN20150229SF JD.docx" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="EN20150229SF JD.docx" UEsDBBQABgAIAAAAIQBi6eVJvwEAABwIAAATAAgCW0NvbnRlbnRfVHlwZXNdLnhtbCCiBAIo oAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMlU9v00AQxe9I/Q7WXit70yIhhOL0AOUI lQiC62Y9TlbsP+1M2ubbM7ZTq4UQu7iterFkr+e9n8e7b+YXt85m15DQBF+Ks2ImMvA6VMav S/F9+Tl/LzIk5Stlg4dS7ADFxeLkzXy5i4AZV3ssxYYofpAS9QacwiJE8LxSh+QU8W1ay6j0 L7UGeT6bvZM6eAJPOTUaYjH/BLXaWsoub/lxR5LAosg+di82XqVQMVqjFTGpvPbVHy753qHg yvYd3JiIp4wh5EGHZuXfBvu6r9yaZCrIrlSiL8oxhrwJqZJV0FvH31AclznAGeraaOjrG7WY ggZE7rmzRb/ilPF3/Ic49BYpuJ/OSkPgrlKIeDYZpxdt9CCRgb6HIxnOXwHD25dmaPeE37oV JP6Lk93/2hS99LEN0UIg7Szg0xN0uiPtfxjaXNY1aD79wwfEYd6gF53FvdphNyDifo8xeZhJ +dApxL3yIMINrL49G8U98UGQmrNyqVYWRnT8kc3opQchiAcAyPY6PYtamWOWHJVt7PFASf/x 2XcTo6nOOYNH5F3vyMNocp+hGXcVVI/17jJ6sn0nc8BctrN98RsAAP//AwBQSwMEFAAGAAgA AAAhAJlVfgUEAQAA4QIAAAsACAJfcmVscy8ucmVscyCiBAIooAACAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAACsks9Kw0AQxu+C77DMvZm0iog06UWE3kTiAwy70ySY/cPuVNu3dy2IBmrS g8ed+eab33zsenOwg3rnmHrvKlgWJSh22pvetRW8Nk+Le1BJyBkavOMKjpxgU19frV94IMlD qetDUtnFpQo6kfCAmHTHllLhA7vc2floSfIzthhIv1HLuCrLO4y/PaAeeaqtqSBuzQ2o5hjy 5nlvv9v1mh+93lt2cmYF8kHYGTaLEDNblD5foxqKLUsFxuvnXE5IIRQZG/A80epyor+vRctC hoRQ+8jTPF+KKaDl5UDzEY0VP+l8+GgwR3TKdorm9j9p9D6JtzPxnDTfSDj6mPUnAAAA//8D AFBLAwQUAAYACAAAACEAw2Lgw9QBAACYBwAAHAAIAXdvcmQvX3JlbHMvZG9jdW1lbnQueG1s LnJlbHMgogQBKKAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs lU2P0zAQhu9I/IfId+KmhV1Am+6FRdoDFyharq4zSazGH7IntP33TFuatGrrBcmXWB4rM49f e14/PG50l/0GH5Q1JSvyCcvASFsp05Ts5+Lru48sCyhMJTproGRbCOxx/vbNw3foBNJPoVUu ZJTFhJK1iO4z50G2oEXIrQNDK7X1WiBNfcOdkCvRAJ9OJnfcn+Zg87Oc2XNVMv9cUf3F1lHl 13PbulYSvljZazB4pQRfw/IHINLmAqUVvgEs2UkwJ1rGr4PMUoLIPqDVv6jagJHnfIhyhaBn MZr7lDThQpNjJIZQTFMyIF0ZGNXYT/n+W8QgkjIM+o8cF6cyjdEUKRX5F5qoNnc3aLSS3gZb Yy6t5oeu2XXL/XlD8oDbDsKLwvaprkHiSc9cLEVVSSpLbQ0uxLI7uSxDKEbx4YYaV0zqdSM5 7H+8Jod5rHxBzprOyFqyRN8psxoR/vrjer2e5UrTshJdLmTer3jrufNWQtV7CDz0zlmP3O6H 3ihUFIWNoyM+WPox6TdbkfE+bRC8ETeN8X3KjZleLwndNEeGkg2hmLyfUkL8n7pB1IBb7myn 5E5JeuaEUWEv5e7h9F6YhszNjA10KSw/e0/nfwAAAP//AwBQSwMEFAAGAAgAAAAhAKQV2Dpe IAAA+AMBABEAAAB3b3JkL2RvY3VtZW50LnhtbOxdWXPjRpJ+34j9Dwg9bIxj1BLvQzvNCZ49 GrdtrdQO7z5tgCBIwgIBGgCl1vz6+bIKV4FAESAJUt3mPExbZBGoI+/8Mutvf/+6MpUX3XEN 2/p4Vb2pXCm6pdkzw1p8vPr1y+RD50pxPdWaqaZt6R+v3nT36u+9//yPv73ezWxts9ItT8Ej LPfuda19vFp63vru9tbVlvpKdW9WhubYrj33bjR7dWvP54am377azuy2VqlW2H+tHVvTXRfv G6rWi+pe+Y9bbT/NXusW3jW3nZXquTe2s7hdqc7zZv0BT1+rnjE1TMN7w7MrreAx9serjWPd +RP6EE6IfnLHJ+T/E/zC2VpFynv5L0f+DrA33jq6iTnYlrs01tEy9n0alrgMpvQiW8TLygzG va6rja33hUvOcwYjR33FUUQP3HpcymbM+I9WJt8HOt/oVJNPrFZki/FPhB4RziHPFMR3BjNZ qYYVPma/rYlvLjjiEPr+5NibdTidtXHY0+6t5/BZxJgFZlZpMc6LL80t9IAt1n1aqmv9Sllp d/cLy3bUqYkZvVYbClHkVQ/CYmrP3ujftYKP79aqo97PPl5VJpVmfdLqX7FPPf2rR5+2/f/h 0zsIptkjBlaq3WalMwk/egCbViqVQXUyaocfjvS5ujG97eEPscFsFg8O++fJezN1vOVFNT9e fTE8U7+6pS8c/r0zsS3Pxfca9qfvGKrJv3b/NaRP2a9qNfrs1v8N/l3z305t+5mk05OnOh4G G7RcmqmlrrA5///JHqjaM39eMHZszcKRfB74k+2AsNyDZvh65/Xuf3oYP973PyvDXz5/Hn8a K59/+Xn0y8+0Co+vhf3/mu2RcGCNcbc5qLdoy3GM0gNLnI2wgmBZsQMTh5/8wOjgtpfr0+cg x3LLoM/fNWwUozINelZ3chHnlFFOHhJ1gmMQziYHde16BZHRP38ZKKPx0/Dx/uHLfS7a8jd7 eKbN3sHzu9YccL6UkEZnWpvBBIupzyEb69VqF9O4W6rWgll57IM8Ym86dN8JbdlThUlrQWJB VAYETeK+U223hrBe95Sgu84bNK7SGJw30yXCu+uwbvvV/d+9c6OJwx51V1cdban0XdfWDNXT he2QEuIYc9slwBujWqVP3JiigoIPYwJcHJ4hwI9EiDnJULoFZEvEtqBZabUH1UpkTGxbEY+C nEzZgvGgNW6EO1bqFpxdvo90GHEe+X8C1SWYUKYVj6NospmwO66O2rV0+s3x7uwdBvORk3rn rlUNptzaASM6L/pVL9oTxZ4rsn05UEDsMbexqWueY2iqqcCbV/iftmVoypj0gK47UAbXytBe rTb4lHuybOiTsbDwK9lyRt32sE4yJUVUHLrVvQfZm0+/kWG84mw7kk58oTo413b1mIMrvF0m gNvkDcUEcKrXV5/UhpUMHg6oLaaDxOFnFsDSxZNxsGvxojp5T9pnl3FES/dd6OCUBN2ZQybs egVZQBNVg7v/JpBcQgGJFCHu4XFmka2ADny3VMgHaydFExPgwlZICZCYahcByrR3cK4x7hOH l8p9u6gjIEDpFtT/FFsQY4gSeDBdF/0TDtpEXRnm2+1n/UU3FfqfQJuxWZ3GWUufqHRSrX5t MDiTB0n2VKsJAi3Doupr6kxHXoCZd4HdIDueMk3p3rXszae37xRGsbI5HUgXUrm+B5mKjndh FSedTm+QtREnkyVMdmT93wlnF9PzUq3SELVKpd7vNrpDFvoPkxnv17LLpoZApcYkdwk00Bsi 5eKoWmZUoYR3xk72gMVl71xmvGCyMU3FM1b6tTI3vuozBTH+lYL8tlQt9QftbnP/4KJ0nr1a I4ulSE3325X+IMMdy2FNS1+dIflWoIelK0xKyn6kM3fZte+X/Y5i1wL88CfYggNYddcuk2/5 2eYxMIHyyn3nCeRQ78neeEvlR90ixI1nW8pQXa03BfgrT+r3O+cvcgliIqbVaXcGyJXgU26s 75E5OKHrnC2ET6Ph0+U8vJA1oFMGkCOKZzNzL4vzTuMvpjMjvXvQb9UaJenf9M35yVF+Mp51 ZeAAVKK7yn+BZ/9bbiOUqKh7I0d5UCmX8Kz0b5Sf1TfTdoTDkipoSj7HuCc17Cuyg+jSBFxW UuApwlxMbSDwcuXFj5CObPdzbEsZcvVc6x3kWG8ZZFDiesu1DtJFw5elrjxsnLXt6hQK9vCn wIqxOZHsOjCslMdwerBd0XmTSoM8aB/ZpFOkgTg8IwxdIhlI15tAADWG1Vqr3iHm39t2EENk x1tvqYZC9sMzveUvtpS0G/XWuCzftKfZ1myjeYrtGEiWq2YWjxWNTuyxDQrBDRjuZ2egoEQj IF0aqZYyfnh6HH5gxpztIKQBJPjvQB4ocDWyNq1so6o3xZFtHGAY3LWuAzClWwC/aTorXsAm yuZ1hojHEqcL50xRjZl7o5CAD/bQcBUQoqY7Fjb21YAjJ5t6qQxBimZGqR17zbbRnsumcnqT WXHs6cb1lPDo42eumgswsrdcuVCYqqeojq4QZp08D2OF3X7RA1IxgLs1TTA9ry2Rbnit32z3 ya4pI2dDzB6jDGUDzJHoth9X1UslU+9GOG2pxssDNXwnhm32mmmFBGiQrjSBKEz1bN7JSncZ csF6YzRVVLXtegUF2X7U35TfbOeZxN1jvHwqN3l18qCIvrFNlxFZhwIPMfe5Va9VKqNWCDpl tTJlrFfdePYTAR5HYwg4VpRQ4d5x9M3PyW9mv0MGPxqLpXfPEOjxn+1hgW/z5+udCRg7Xqur rtd3DfXjlW59+DSgmWEbnYBnDwQj7ffibEsWytPdaFT3ON8Aj7lem0BcopLy1UBCCLVsz1D5 hqUZa9U035SNNdMd5trNDAe2FGoMd+FLS1VF6eGonVGhA2TJkfdfmW78vVZN1+YbrplwobHZ O82qQb3dqUQOW1GxeOSlIEYF2ljpqynMgSACENiLnq6uFNCRuaF63kzb5cxL0GzTVKeoGvRs LEGQ/DGSISfh6FSdR3xkcrEh92iOPtlAnmVO6Il7N//w/QceJX5Yom7bA9bnSTNQ2Y3osWyH j07csUn3VDEuVPbhxl6d7q0qv1oGK3333oB7N019oSuf4ejb1tm2KL9d3ckD4JRBgwI3JRZH F4efMpKEs8osv+zkwWmWYfIcxUIJqJBWGFgjBJVIK4TuJLBDqR7EJSgebGngQYS5Q2r/YOii VyylrDxgkYL7nSsauxYKz39mhjU0NLenrc2Km6uG+QJrULC18d091YgzQxp1nNzMDX+xB8VO cyavYtL6cHshdoLponlHrFcM8Yv5wXJwSMwG91QkYbN0w1F3pRcEmsNor/BaKVEn4D/Vfm3c qUVlicxDlG1gimIQh2cohndE1NtGdkBxtHNHdwaDh2daZiDnNRxVhrfWVMd5UwDDCY8WJrqi ahp6nlBUercHUm83K5WysOEU2A38B9VAhJSqBQmjOHfQuMItYKAkkELVcWs8rPVZ7XkIhBWl pcjIKXQoDr/QYUYXElKMRHIo0DUoiODpRGLBqa50+APWQlSTMfFOnlYFxfP1skLZ14qL6gNL ddxrRl1TojgqJyYErK0sYJQnRqiep4MM0WFJEIOJSZfKF/oLC9AgNuMu7TVnCyRj5rrDvKoC fJGAj6UaeSKhf3d88W6NDtChSy3Nwhwr+CZ2ytcKtb9SZuobJwAZNQ469eqQXJcyskFgk1nW y49riIRl/kifvhiuQUEa4c1SWyQB9qr3m91Bg7muEdxBtlHB7sWcVFE0XXSAXAe8Is/JFPoC JO2Crte2g5ZWpNRB6yRzidZRReuyuoP1ZkqhaBZipjEzw+Wymn3yYqjK7/ZGmjAvVQgDeQGd gYkTk8ZaFJDR8qpPCwjhJNxu2K5OqmPyvyPCvAjhUk1lMlE0W5AlCYU+7NRHnbKskA9Zbz6u /ITCQGTbt+rBUrfI43//q3Y3WDbUBZMuHK3kepsZuBbiSo64GTYrtSr5sGXoTZZpltJcufIL 9u3a0EgOo1coN3djDlcB+UVcEUsDV2qVBvojUkz4Ir+wBUGktUxXn+SXaahE5JQ0zBIn5E51 Ju1WleAhJdB0egBNSU0MyuZYJlwsfY6BQyqbVZk716P8aNbLj6oF0tfPw0FSafTdaUBIO17h SmJvqlv63AA2lAPXA3qwp4QYRRRAdDTAPAEDEU+VKqgLSOIEgr3SbHSb/VjsZFc4JVjTxcUp 2mzXD3MtdXOtUKvnLFYunVo8vJzhc0Icwxswxi+GY1tbDfKk7nKiOqA1abQatXFkDF1oSey1 eQIhDSXv45wVVXFt5IE4Hos1xSdUDYSX7i3DxnrA6JoAZpPz7KpzHdACR19s/M7wPN5Jog8u LK939HOWuwBdpUo7EsoAP0HgsnnjT4OcFCAi1MWmUMw/AfZt9lvVfmsQuXAXAi6RgMkgjfKU qvWmWDphDFXkm9BTw7CIXH0XNIbdP5vYLKBkyXaOuzvo1Tpu1y+C8SSOTrr12gd9cSdjtiHU BQTGCtrORaFNEO4gQbdw0GsqtPBQG6ioLsKKhGOF/zt9y8ynk6goE46WviqachZDHFXb9Ew0 XYXZYqkLADhvgQfmERN5cKRUNZCfH7t5UPcy3yXF6BWHZ8T1I6z5GI+Iw8mjbwqh0KmHL4lF 3FCho8QG7Xyr6OTAMDF7g2mCPukGe4zhN/OGPkXoL5g0UqwV/z3bYIU8sNQAyCCzJ7uJYoHU VGMZyLnoMC7HdDDehCdLT0JURHgo2ECuHWnt2QNE08DR1WdGxwxSYE9Zq2s/crFaB4B51CmE ENq1jRQSKQSygQXjN4Kik5h9RvGPMBb+v6bPNjCNqVp0iOS6QRFjXLuCW52oNbU1x5NZuOCe rsPQXe9aGameqjw4tscLI66V8R8bpCp/WVOiC52sSTVdKxPADVBPgS8e49Y4oNKBsf7EjPVr 5X4FOUwDx1/XeKSfZPoLld9Z+qsCkxh7gyf6kpuvMhLe7g94hIXRuL+J6jS+oN7UAucvsIAH x3gh3Yh+rdhZ8gz5rzElw8V6SEsGC8MbaPueVjaFrAtIZgoBxyylC8tzYS4yUUmyOBahKmor iPMrVXPIUGqR+4BSac3AfW2RF5twWJHC4JgYD0Wz1sx4MWbEeI5tEsPByHN1sCpgbuACYvcA Yf+bPgWKQFe2eE958pyN5oH/Gek/Jj3kNZjmaLaZuN9HpgcKTP0lYUUu3yBXYPM9Kw67C8q5 n/FrWMD6tvMGu+OKIVcDyyiTgATo8D+Cp3Iqz7qwSqSn/QwOWpR/ydjr62v9BoXSTFDeqNrN 5vmWBztuA4GONOdCtQyXSUFIMoAeUajHhZ6wM7Bfwq3JtwEZl3KVfqI/FJDC5ypZ+IYNr/2o MjCDSxK9+02KWIVaYM90V3OMNRkCcI9Vy7LRkEBX9K9LdeNSgoMJOhKO6N/jfVjaJmwLWBZv NMrR/9jATWaQyEgsxz3ua+UVcUfEGiExp46tzmCNIRDNHEtWxkhPRmUd3kO2VjLkWICc89Sl XPwIwd3bj3LeLTmHZnGgxlkvktXKADKXkSioldnpZMTaofH9xincVnTTIMgvAY8JVAa24H/a 1o3Sh/Ogw5ew33TyGkDNOrO9+YPVGSpcWWsOxii8Lho2RmhfgOQNWNIpdj9xw5g9mPUoeSDH hNnh9spmM3lEPTv/ITwMhX/PZkz+DGe10MxZbAyGz79dU3tiXGSrMEQ8VWsXQMV385Qcydqt B/ZBLF0oDs+InOwRzeBWwzYhg0iFuCMRbVZJW5ditLv8EXEBO9HO4vDTr/cAXbNrSxGGohiR B7MOF0vB4CW7jvab/X/2LidqLVK9vm4fF5JQRCgFhBJ8GKcqYfjxdpnbabup6oBd3vUKeZgD d6M+/fKz8vQwHt5P7of9QtdXdvOg+7+xk5DydwLhfaE81PZmEzdZhv2g3QfXdXE7D7dywFRE rg7+MetMBZVHQTKAsAHeJv03R1bWpiu6FdTEOAYaWRTJz3aTsGf/uEKhQEmX/hh3VxISIZ+c EIcfT05kbyLRYwDwy9Q7CYBkKl0WNFknjUajHm5MxkpxK6hLk8K/2EGWoaB7V2k7cY643Lrp h/1jA9BUcBmN6DTrbV/sBw+LshRk3H+8qrVZ6pP+eNzQXdvk99FvXu/20PO7xGWw3zFPPQpi VFnf62VGFIPoSbbLNGNmS+AfqV+/FaGZTPh6t8nk9W4T7Dw1Oed3epMO5WBQXH+dFuKVBCWk 8i8B/zoGnYkb9v3Q2fZRBacSUZiTKnZykEn2w8GL6bneL0vUkTB/gyRrG3UlrOcS+RZM+IZ0 sjPov+W0cDF9J4YrpXREcmWXnSwSxk47WRyeQUdh74Cd3QYavlAKf1GuVMo+0PNQy3CJruuU 0lFJISOvROGbNXJWKkIwiIFrdKE2j+jE/d+kXMm24RPYqZNJkvA8LxQQqIh0eRHdjUvROQL1 OYi4UZpOn88p/Yh2qLyBmGHx9J2qObDdrnGvj4pK+vykkIA7XUjh3QkDuquCgrWkObylvYEB x5O5PHTlp40pFoYRybZmMkXQzwOtESX7RRFElQGZabMM6zKbsMhVGyFsiQ5hkcBHPhMwt0Rh gvQ4zwXBuUj1Ws03WORSfWxpKGmm3DKDp7ik19dh5wym8EnC+/FrdL0Wotf5hXr/XMiMCyXk pISnDctbMI0eYP4B85+jOslGTgNNcKjWz1NNIHcKnPu5csGXc9869x41m6asEGx49GOiNvpk vnEsF/qqqeJd4lLB3sjhsFWbjWYzQqkLyilwdGMhd3F4hsMmttn6jMDLgwrx5ahr/7YigHHw bAo6IfrCgyRHDAqF2FQW2kKz5V+f4mI28M2kW5cnBzbs1FqD/FsnDs/YuiCcFgu9HR6bO/3e IpQVEI9AUTmiJFMWI9w2enacKtlC4+gWhNyOTJ8OcFdUQzy6ncasODzjpL8DJkmk9GrjSncw SVT4i3txnK3bB0K0Bw9IaPCd9nLv/Z+9UVYA7gjkH2NGCnY3m41Om2LCKcmTHPy5365kRjgV 1QR+eyZqtdiMi4qPY09vqb7g7mNAq4F3Yg3YWSDNBmSDtahDEEWZ2RrwkQCWznS0MNKVv2A0 /Qz5LwJjo55oDvNdeUOTEdb/HA31zQ/Ur1Ah/BSUFBlrgD7xJiTknTusD/YPZAa4xgIthRD4 BfDcpWQBzUXFcN6dA1AUlcNBlIVtz3BJs4P3xSYSvUJGE5VBdTIidn4fNBHtAa2N+tEw6A6w vjxqkbWUMxMLOzBA55HzwhFaC+Dpl28umqlcKz+pCLIQ4B6dVbAcxOnWyIs6QcvzGyXgXJ9y lKmqPS8cVswLKshaMPHz0SvQQk0rkXKZ/EzRpqzZnux4ehG7ZM3l/e0cwdL8279AIRzapcLx BwwTEHcmBjK7TZxsZ9PDzjfikUst6zzokzKMhu/EspbubR6ky2VvMz3CA8yOQ7wWXNvI1BrT 4/9DGNV0RSc9+gRspjVqogC9RhEArtJJ3pVx9DvdmPwxnpbvpYe/iLK3YeUrKlKxIv5nH4gS fwjVpuBzdQ6div/mo9hfiUH7AlAkZqUfZUgLMRxAUMVemKmOH5YjsjciK1CU1LEJEoGUZwam bFLmnHdZf5lLOKIWLDLfVCudVTeEFWo+RBuIbMRpZSZJec5ZkRWREReZUGSYyOZcngGaPude lpWUNckz0UVgtOWvYmFXc8aCUTXEUyqTIavCCxvSX6Q4idq9YITFhCrp26N3Zwydq3TaTrev J3Gv3veIVwgsIG3/ASWuuin6x1JufR8ynmIkMaW0S+T/kLmk0nm7x3IxYY2Ny+8oY0o18vQh 1tE0tQCj58Fk1ge1uAUnrDQw62KpGXF4RtT5O/GCYnaLsC054pcHWOo/Wvarqc98CN04DNQJ ekdqpScglGiJOxqO2symDeV7X3InesqxixZDxrGHJvVOAF2A6w5/cTHCOUSeZ2p3iO/evZXZ tJsMbNnZ5qDdYvoLBnZvpq/R6u85JFyKMW1FlGOXjVOuOage5P32qSm2DyH8igJIg/cbYcEq Fp2kXwRhKpci1mQ84kIKT/+Kxgpz4UZwdEDxW40UEJV5QKeyfU3hGXH4hWdIgDEI0vsxecBI KbQbZklWaGhpzzieEQAYDxgD1t+SeS28QU9+qZzAsla7nUGzMoxSZLs490Jh2AFmz+4Wkueg sN7TlsiLJCIccrr2bIbLk9DaCQk7mNMC6cRsDSIEUd+KCe1SRHh+UTlIAHPr3UGz225SxD0K AoqyT5x/MC5mVYrDL6LyrKKyF6URkROOaDj0ToiYxZRRLI4jo+qjd23cZSgVoOo8+GSRTC9U Tf3heJikmM14FvEc+VWwF2MafNsYBfJniXtHqbZYQ5e7FTKjsfugcjW5qFbak0q3nUxDDuvD ziDRrrc/aHebLLHAnDPB00wTlcLwi6g8r6gUiMqPGOsWKuA01uILBU/wRYw/0DxcQaOYJeqb URmFdkiGo05N/VuVlXkQ/AV7O+SKK5UQJQCHZZWSe58JmpIdBibfsw8wKLvbAM9htilCdPwX zNOBRZRRb8MDREEzU4n4lMBjjiBGjzENigA8PRumyR2l/rTo9eODPJUBBXVvc9yoDcnlYjZp hpg8Hz1xbDrD0X1mnQzasm7LF0qLmhaM0QOE9cIVhCexAvlFawazRtmSej+DHzWpNOuTQaJC od5otqv9YaRyz+95d0hmYA1hPDQlgq4B5ekQQfP2GQG9xDD8+HX4fbVaD+rUg2eVQO0lpsiw 0HJFn0TmBlkz+RxI7j046CoIx57JPNwuQZek+KWS0Q2iH4KWcGFgKS2ZL9DzycMBu5dawJdK 1LVUG+36pD2kT99LhODCcFuus5wCjmBrHIXhnjYaQdSBbqerXDR0EdY125lRDmCBW9TQMYr8 NgtciRbMAdod1coAQmfiWk8TcJPvLwmTAhyWqCdCH6R2vz/uXzjMR+W9S+yenALeCYelY0N8 PeeSmc8KRnSPMdpmjUzfyr/Wi7UrRUNT1tDfsF5s84WYkV8WJmbw6K/3rvC4O581SyFOc5yQ vJw+ICHSz0aaa82a/juReRkrIvKAjYS++uaGS3Tke3EXW9B2ooCkTIbg/B4yF0l5kZTydOJO buz1KXdMdIpoMurO0QSapN1WFjAGfMBYJFdwO2ZQcTbEdS5//WsBck4UX7Sao/G4VrmY1gEc /6L4M7LjBciZbu1hKh3kzAPYGhKBjr7GTUKusmH1oZ/VL/r/slqSRHtwz7bN78nSJps6Bpau 17pVVL0cBKYTQ5kZsckwFLQTTHfxZb9RX3Y7eERN9BFEelUdoI5C93Vhq4itQ3cQ6G1Orfrh 7UaMiYaLuKEWPRe/J7bL07Z4NGi2GlHxmWCRQ9yxdGp5IJML232TbCe52C/dGcnkUoR6cdUM sjdokxvFfUOu9YNOId9CqRLfrmmA5d+ndx1qVXg8dI0N3fDBmqmiBy+an1/jHUEndLo8p0AJ 9CAB/q9OBvXOINE3pSAH5UqqXRRXVs734ABoKSEiPNTPVaMlf5THoFuMcW0kioZ1hZcZUk0K QWB5mjegc92RhRgq1dakG1WWCSJ6r6BJfLaAjjv2Cn1KXlT0MsHFNWAv6kporBlXyuZ1dHxl fF4F3LlEqUajORkMW91Ip1GYpiCTisCLi3XJcRlTuCm5gBnvk0lDVSvJiVIK4RO150EHGL8N DNw2PzV5UmbIO9sCjJKoz2i1JqNJFznwwM67MArd2p3oQ4DNOWuzAnnM4ZTajHeyIjstCFfw RljUkpqCzVR/5KctGFA/wH36JUboXG5Tly0HqX6MRhtz9Lqna5BZQuS0fteemiZRflLvNAa1 1jjqxnVhoAsD+SikNHPQv8YWoYdXS2FhCmYUIuRtrKBl3A36yb0YLpyUk2qa/ZhhmCxhaaFG tt4K4YKPF2a4MIOEGeCcoz4AvlCMHRCeg0u0hpPO2q+EsYFvgR3y4LnLuGqhBEQiTI4Lnvsw WDn5EaPUEgWy2LJQtsMEiLsyHrZH3Vrk+5NMFTMfpy6g2orYlkB/f3pEbCyEpH/VHY2EJIwE D+FMulECYjKeXiRrGsO0DUMTMbuCGtKf1qIO3dX8uN/8nuswgT6v1ce1QZddB/xuwbAXvvh4 1S9U3Cj3dEmiRo1cKEy5Up8JLBLelxVL5wkJAuZuAvBPXXyFL05qVpTLIAm0eOolX2J52E7F IQ7PiIGKTSUH9uztCyq67i0KBPBQ4R7t3KdMAbj/AkEwaRKgMbbDioHrQkr1wAZgxV9KFPmA 4IdNbb/74Q26AlVJtX0CgPxnPTTpHiVuLmgMJq12rSqCtEVKPQ5h58/AbTVDDWqFYlVFxeqO mg121Qr2JXhU/BoW+hacQTdEQvx9vPJHH6nNHl7KQhd0KAdyVDa7Euf8BhQ05o/ML0v9biAy HE99pksv3xAWpAIF1UE1kKPC8oGYh8XDsBuOLa/5fSdZqWECM9vodBr1QV/MSl0I93im/rkI l9nbqsuueSOrRKXINhKqFOK26S4Ke4021ojxzfwLojQbn1CNzYu0dv290HECLFsdjMf1ekvs VHOh42+PjtOBOgmpDOlLRWCU+GUABh8/9yt8UVDzj5DLMwIPgNbVKS4vZiSPdA/6pMfuSWFf e56OUYJtBE0DPRZ2UyyT4NMXu9LZzTA8e5U1tePCLbA5c+CT0NritO55IB1J8xbwuxPA3eqw 3hrVByJS/sL8O5n/yXszgQDi3syT59jWgjtHWSinaTDYv3MPwcjEJ9nGVemWW99iOu1amZv6 VwMtWAIHe/sec1KOZLxBbqjUahINAC0P3VvY/eb0hW69GNgOKnfLYkCKeZYpGzL4wcUl3A+C gMpB6E/4Ec13Uq93q90rFuddPJEj+4rLDqrdCrl8d0v8d6tTZ6FUmNmLn1R6D7qe4PMGt+4d dLnBk6od/xoF2/Ps1ccr6nCBofw+xuDLJSCUdJlCu8K08ty2EekI/1xsIHrxp09JGioL8ASK Tul8DKNe3Iz1yTHYXY8AYz4YnoZJ1gHRx7cgKL4Z7D+n8PHZf+AnGzq33r8FAAAA//8DAFBL AwQUAAYACAAAACEAlrWt4pYGAABQGwAAFQAAAHdvcmQvdGhlbWUvdGhlbWUxLnhtbOxZT2/b NhS/D9h3IHRvYyd2Ggd1itixmy1NG8Ruhx5piZbYUKJA0kl9G9rjgAHDumGHFdhth2FbgRbY pfs02TpsHdCvsEdSksVYXpI22IqtPiQS+eP7/x4fqavX7scMHRIhKU/aXv1yzUMk8XlAk7Dt 3R72L615SCqcBJjxhLS9KZHetY3337uK11VEYoJgfSLXcduLlErXl5akD8NYXuYpSWBuzEWM FbyKcCkQ+AjoxmxpuVZbXYoxTTyU4BjI3hqPqU/QUJP0NnLiPQaviZJ6wGdioEkTZ4XBBgd1 jZBT2WUCHWLW9oBPwI+G5L7yEMNSwUTbq5mft7RxdQmvZ4uYWrC2tK5vftm6bEFwsGx4inBU MK33G60rWwV9A2BqHtfr9bq9ekHPALDvg6ZWljLNRn+t3slplkD2cZ52t9asNVx8if7KnMyt TqfTbGWyWKIGZB8bc/i12mpjc9nBG5DFN+fwjc5mt7vq4A3I4lfn8P0rrdWGizegiNHkYA6t HdrvZ9QLyJiz7Ur4GsDXahl8hoJoKKJLsxjzRC2KtRjf46IPAA1kWNEEqWlKxtiHKO7ieCQo 1gzwOsGlGTvky7khzQtJX9BUtb0PUwwZMaP36vn3r54/RccPnh0/+On44cPjBz9aQs6qbZyE 5VUvv/3sz8cfoz+efvPy0RfVeFnG//rDJ7/8/Hk1ENJnJs6LL5/89uzJi68+/f27RxXwTYFH ZfiQxkSim+QI7fMYFDNWcSUnI3G+FcMI0/KKzSSUOMGaSwX9nooc9M0pZpl3HDk6xLXgHQHl owp4fXLPEXgQiYmiFZx3otgB7nLOOlxUWmFH8yqZeThJwmrmYlLG7WN8WMW7ixPHv71JCnUz D0tH8W5EHDH3GE4UDklCFNJz/ICQCu3uUurYdZf6gks+VuguRR1MK00ypCMnmmaLtmkMfplW 6Qz+dmyzewd1OKvSeoscukjICswqhB8S5pjxOp4oHFeRHOKYlQ1+A6uoSsjBVPhlXE8q8HRI GEe9gEhZteaWAH1LTt/BULEq3b7LprGLFIoeVNG8gTkvI7f4QTfCcVqFHdAkKmM/kAcQohjt cVUF3+Vuhuh38ANOFrr7DiWOu0+vBrdp6Ig0CxA9MxHal1CqnQoc0+TvyjGjUI9tDFxcOYYC +OLrxxWR9bYW4k3Yk6oyYftE+V2EO1l0u1wE9O2vuVt4kuwRCPP5jeddyX1Xcr3/fMldlM9n LbSz2gplV/cNtik2LXK8sEMeU8YGasrIDWmaZAn7RNCHQb3OnA5JcWJKI3jM6rqDCwU2a5Dg 6iOqokGEU2iw654mEsqMdChRyiUc7MxwJW2NhyZd2WNhUx8YbD2QWO3ywA6v6OH8XFCQMbtN aA6fOaMVTeCszFauZERB7ddhVtdCnZlb3YhmSp3DrVAZfDivGgwW1oQGBEHbAlZehfO5Zg0H E8xIoO1u997cLcYLF+kiGeGAZD7Ses/7qG6clMeKuQmA2KnwkT7knWK1EreWJvsG3M7ipDK7 xgJ2uffexEt5BM+8pPP2RDqypJycLEFHba/VXG56yMdp2xvDmRYe4xS8LnXPh1kIF0O+Ejbs T01mk+Uzb7ZyxdwkqMM1hbX7nMJOHUiFVFtYRjY0zFQWAizRnKz8y00w60UpYCP9NaRYWYNg +NekADu6riXjMfFV2dmlEW07+5qVUj5RRAyi4AiN2ETsY3C/DlXQJ6ASriZMRdAvcI+mrW2m 3OKcJV359srg7DhmaYSzcqtTNM9kCzd5XMhg3krigW6Vshvlzq+KSfkLUqUcxv8zVfR+AjcF K4H2gA/XuAIjna9tjwsVcahCaUT9voDGwdQOiBa4i4VpCCq4TDb/BTnU/23OWRomreHAp/Zp iASF/UhFgpA9KEsm+k4hVs/2LkuSZYRMRJXElakVe0QOCRvqGriq93YPRRDqpppkZcDgTsaf +55l0CjUTU4535waUuy9Ngf+6c7HJjMo5dZh09Dk9i9ErNhV7XqzPN97y4roiVmb1cizApiV toJWlvavKcI5t1pbseY0Xm7mwoEX5zWGwaIhSuG+B+k/sP9R4TP7ZUJvqEO+D7UVwYcGTQzC BqL6km08kC6QdnAEjZMdtMGkSVnTZq2Ttlq+WV9wp1vwPWFsLdlZ/H1OYxfNmcvOycWLNHZm YcfWdmyhqcGzJ1MUhsb5QcY4xnzSKn914qN74OgtuN+fMCVNMME3JYGh9RyYPIDktxzN0o2/ AAAA//8DAFBLAwQUAAYACAAAACEAz8BkTw8GAAD3EQAAEQAAAHdvcmQvc2V0dGluZ3MueG1s tFjbbts4EH1fYP/B0PMm1l2yULeQZKmbbpMGdfsBtETbRCVSoKi46dfvkJLiupkUxRb7FGou Z66kZ/Lqzde2WTxQ2TPB15ZzbVsLyitRM35YW58/lVextegV4TVpBKdr65H21pvXf/7x6pT0 VCkQ6xcAwfukrdbWUakuWS776khb0l+LjnJg7oVsiYJPeVi2RH4ZuqtKtB1RbMcaph6Xrm2H 1gQj1tYgeTJBXLWskqIXe6VVErHfs4pOf2YN+St2R82NqIaWcmUsLiVtwAfB+yPr+hmt/a9o EOJxBnn4WRAPbTPLnRz7Z5JTuCch6yeNX3FPK3RSVLTvoUBtM4bbEsafYBz/GdBTqq8h1cvR 9lJDgbpjm9PZ8755po9Ue6zie7aTRI5lhgbQXrRVcnPgQpJdA011cnzrNXTUNyHaxSnpqKyg SNCOtm0tNQOCEfutIooCu+9o05j+rBpKAOyUHCRpobPW1kgxOr16bOg94bQ07VeyRlEJsg8E XPdK29GKpGm2Wq4HY/q7Gnol2pkEl+GUQI+AMxckA93f8M89OG+EjpToK3MhxYd2R+WPVKVD vpCrmaSVGr3UF+oD/zjw2aHnzHsiCcTbHV8WuZstT1E9B/mkvZgBdNLk2f6kpETn/X0ZlknR A+vZjyEQnVsOiTKB3ZFWY0+1q+meDI0Ci1uAnAsQuRObi/uBV2owN/EfQIEMmPpVRwi0Atxt Ryog5oIrKZoZoBZ3QuXwjEjo8rFLxkdF98t42o4PFGhw8Aia4/tH51bUVJd3kOxZJ794E7SC 6R9o2NFJA/mjIQEPqmQ1NVk2KSnB+S37RlNev4MWY/CMmYB/w4OfOUC5ru8HeH4/PXa0pEQN kKb/yZipRNmw7pZJKeQNr+G+/K6x5VxEXU74dar7+fBRCDWXwbYzz7eDaMyFFjtzbCcsVyuc E4VehnIyp9zgaKXv2CjH8e0yQ9GcwA+CELPjrAI7LlFOAX6nGMdNgyhF7bi5s0qn63SZA7e0 3SjH0Dx40lMH5UT2xg9wTmDbL3CiMI1RnczN3OmyXPrmlW5uu5iO74VFhnOCwC/QSP2VHxQF ipZFueuhnI1rp2h2/NJ1C9RrcCDGMxoUvpujNQ1jO9ygvoWrMJwfwsvshKmbZWhGw8KPQzQH YenZ8QaLNArD3EMrF+VeEaKcGO6Pj+YtdqIwR32LoXc81IM4ttMIRyuj0EHztkqhR9AeXRXO JkI7JPWd2EPvTxrZKd5VaeQEG9TrFLxeoR4AlIffhTSLVgGuU8CVQ+1kcOnxPsjcwItRtJdf vsyLwG+sD7LYc3K0ChkkLvJRnTR0fdyDEn7F0U7MPTtz0JuVB7broG9iHoRugfZBHkGqcbTY CfAq5LEbZrid2NvE6Dua51EQ4Jwyimz0t2Tje16Oc1b6bmEZ3WRB6KO5LqKX+rrInCJE7RQZ vAhodoo8zEM0B6XnrRwUrfR9H7/BZQShovUpV3aemQ6BX239jMFvdZvofehezic9AC3acXjK SbuTjCxu9cYEY1Sb7OSXjPGZv6OwMdLvOdthNzOvrkZG38LsXsKEODNMI7ZJzfpuQ/cGtrkl 8nDGnSQkSoUx9d0Tll4/qHwrxdCN1k4wcI+DzWzO8f0Jj3H1nrUzvR9221mLw9bzHWvg9YcH qQGX5/ScEgXLMiwpgEL4YZ5fKL96m+mBjZJepT0ja+vb8Sq/09owGjVyq3dseku6DmZjkNsd nLXVsMNRmSldwVcNu7b52B3ciedqSAVfmmc+SKWDBenpoAXGI0hNhzPNm2nemQab5Cjnn2nB TAvOtHCmwa5/So4wmEpY477A9D0fNX0vmkacaP33TFxbz0hjEszcecOrZqgpNEgtKljJ9JLY mxwZdjooMS8J9wzWDBiDDbc/ko5Cn+jVBNpVJIYw7Sr94iGhX2EBpTVT8P+PjtUt+ar3Uddc p0m6IY9iUBeyGkkLdxfURU0UFHC8IhfK0Aqw0F76ckpqWjFo7+1juzsvPNdj1A3r1ZZ2sBsp ISFfZh35y/AcP4Ek3MAMDCdDt0s78MpxntSGpv/YvP4XAAD//wMAUEsDBBQABgAIAAAAIQBc L2r68gAAAE8BAAAYACgAY3VzdG9tWG1sL2l0ZW1Qcm9wczIueG1sIKIkACigIAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGSQT2uEMBDF74X9DpK7RqsWXdRl/wX2WlroNcRx DZiMZOKypfS7N9LTtqfhzWPe7zHN7m6m6AaONNqWZUnKIrAKe22vLXt/E3HFIvLS9nJCCy2z yHbd5qnpadtLL8mjg4sHE4WFDvNyatlXmR5ELs4iFvujiAuR1/HhWGZxVlTFvszqc1XW3ywK aBtiqGWj9/OWc1IjGEkJzmCDOaAz0gfprhyHQSs4oVoMWM+f0/SFqyXgzYeZWLf2+b1+hYEe 5VptcfofxWjlkHDwiULDaZQOZtQh/JZzhdYHjv+cga81iPGu4X8gq354QvcDAAD//wMAUEsD BBQABgAIAAAAIQBjZYhgCgIAAAcEAAAQAAgBZG9jUHJvcHMvYXBwLnhtbCCiBAEooAABAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJxTXW/aMBR9n7T/EOW9GDqW tsi4qoCtSBTQSNtnz7kJ1hzbsl1U+ut3nQwIa5/K0/3i3ONzT+jta62SHTgvjR6ng14/TUAL U0hdjdPH/MfFdZr4wHXBldEwTvfg01v29QtdO2PBBQk+QQjtx+k2BDsixIst1Nz3sK2xUxpX 84Cpq4gpSylgasRLDTqQy34/I/AaQBdQXNgjYNoijnbhs6CFEZGff8r3FgkzmkNtFQ/AlpGO 6hUm1JQcqzQ3gatc1sD6WD4mdM0r8GxISRvQZ+MKz25uMkrakE623HERUEH2Pbu6pqRToHfW Kil4QHHZgxTOeFOGZNXIkEQASrojFKXZgHhxMuzj0m5KF1JHKleUtBFyc7xy3G49G3yLDI8p 3QiuYIIKsJIrD5ScCvQeeLzumkukTHdhtAMRjEu8fMP7XqbJb+4h6jZOd9xJrgPqF8fapImV 9cGxXAaF2Nhr8ybsjnVjOWSDZgCD88EI0HLAxjm7ZoNflfi28AHZQZdsw6Gl2tKZP6xnv+Z3 i2SyWixmP2fJYrWcrpbvCDfPx9X/LZuY2nK9Z/MafS65SiZGKajwwYdOPMkf/2hzM43W+if1 ebHjj2cZthvLBV4xyzIU4+SUTotu0FBQ4OkPgKcCvcezOBW34n91BcVh5n0jeu+p/a7ZYNjr 468x26GGhjl+cOwvAAAA//8DAFBLAwQUAAYACAAAACEABLq7RxABAACSAQAAEwAIAWRvY1By b3BzL2N1c3RvbS54bWwgogQBKKAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACckMtugzAQRfeV+g+W98SDA+EhIOIpdddF2j0CkyBhG9kODar67zVK2+y7HN2Z M2cmOd74hBam9ChFit0dYMREJ/tRnFP8dmqcECNtWtG3kxQsxSvT+Jg9PyWvSs5MmZFpZBFC p/hizBwTorsL463e2VjYZJCKt8aW6kzkMIwdq2R35UwYQgEOpLtqI7kz/+HwnRcv5r/IXnab nX4/rbPVzZIf+IoGbsY+xZ+VX1aVD75D66h0XHALJ9pHgQMhAC1o2UR5/YXRvDVTjETL7eml FMZqb9CX3lIXE0/zhzYqgxtYBkDkQxXUTR56NADPK3JaFi4tDnkJdt0+SMhjJiG/VllCNt37 M7NvAAAA//8DAFBLAwQUAAYACAAAACEA9IkNA3QBAACpAwAAGAAoAGN1c3RvbVhtbC9pdGVt UHJvcHMxLnhtbCCiJAAooCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsU9Fq wjAUfR/sH0re27RatYpVRBkIG4zNga8xvdWwJinJ7dwY+/eldWNzCvVhT+EmnHPuPedmPH2V hfcCxgqtUhIFIfFAcZ0JtU3J0+rGT4hnkamMFVpBSpQm08n11Tizo4whs6gNLBGk5y6EO5eL lLwnUTzoxcOOPwuTuR93u5GfJL2hHy+iYRL3ov68H34Qz0krR2NTskMsR5RavgPJbKBLUO4x 10YydKXZUp3ngsNC80qCQtoJwz7llZOXa1mQSd3PAf0AuT0u69YqI05UpOBGW51jwLX8EjgQ S0BWT0e5VujkVm8lEPpvrKVxAxoUYGmtNEM0YlMh2DaN/X4f7LuNH86AiK7vbh8by9qA38Ze MPJPc5eSnkmrZPyZbeHETQP+5fxlZYpm1oxTKKDO3dIoiGhbY7+BCEbaVsR5f4QL3yhWUL3J 2jTPMxy2lgqV65LhrvZjQO+ZQQVm7nbL6KIJnf5Z37o++l6TTwAAAP//AwBQSwMEFAAGAAgA AAAhAHQ/OXrCAAAAKAEAAB4ACAFjdXN0b21YbWwvX3JlbHMvaXRlbTEueG1sLnJlbHMgogQB KKAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACEz8GKAjEMBuC7 4DuU3J3OeBCR6XhZFryJuOC1dDIzxWlTmij69hZPKyzsMQn5/qTdP8Ks7pjZUzTQVDUojI56 H0cDP+fv1RYUi429nSmigScy7Lvloj3hbKUs8eQTq6JENjCJpJ3W7CYMlitKGMtkoByslDKP Oll3tSPqdV1vdP5tQPdhqkNvIB/6BtT5mUry/zYNg3f4Re4WMMofEdrdWChcwnzMlLjINo8o BrxgeLeaqtwLumv1x3/dCwAA//8DAFBLAwQUAAYACAAAACEAXJYnIsMAAAAoAQAAHgAIAWN1 c3RvbVhtbC9fcmVscy9pdGVtMi54bWwucmVscyCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAITPwWrDMAwG4Huh72B0X5z2MEqJ00sZ5DZGC70aR0lM Y8tYSmnffqanFgY7SkLfLzWHe5jVDTN7igY2VQ0Ko6Pex9HA+fT1sQPFYmNvZ4po4IEMh3a9 an5wtlKWePKJVVEiG5hE0l5rdhMGyxUljGUyUA5WSplHnay72hH1tq4/dX41oH0zVdcbyF2/ AXV6pJL8v03D4B0eyS0Bo/wRod3CQuES5u9MiYts84hiwAuGZ2tblXtBt41++6/9BQAA//8D AFBLAwQUAAYACAAAACEAe/MCo8MAAAAoAQAAHgAIAWN1c3RvbVhtbC9fcmVscy9pdGVtMy54 bWwucmVscyCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AITPwWrDMAwG4Hth72B0X5x0MEqJ08so5DZGB7saR3HMYstY6ljffqanFgY9SkLfL/WH37iq HywcKBnomhYUJkdTSN7A5+n4vAPFYtNkV0po4IIMh+Fp03/gaqUu8RIyq6okNrCI5L3W7BaM lhvKmOpkphKt1LJ4na37th71tm1fdbk1YLgz1TgZKOPUgTpdck1+bNM8B4dv5M4Rk/wTod2Z heJXXN8LZa6yLR7FQBCM19ZLU+8FPfT67r/hDwAA//8DAFBLAwQUAAYACAAAACEAvYRiI5AA AADbAAAAEwAoAGN1c3RvbVhtbC9pdGVtMi54bWwgoiQAKKAgAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAbI47DsIwEAWvgtKTLejQ4jSBClHlAsY4iqWs1/IuH98eB0GBlHqe Zh52JLx1HNVHHUryncETZxo8pdmql82L5iiHZlJNewBxkycrLQWXWXjU1jGBTDb7xCEqPHbw tWm1wVhd0hjsg1RfMT27O9XUOVyzzWVJIfwgHm9B1ycfghf/XMcLQPg7bt4AAAD//wMAUEsD BBQABgAIAAAAIQB9Yn6nzgUAAC4ZAAATACgAY3VzdG9tWG1sL2l0ZW0xLnhtbCCiJAAooCAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACsWdtu2zgQfV+g/0Bon2vJl8SJUadI 4hYI0HaLTbDYt4ImKUdbSVRJKpe/3+HVknxXmj4klnmGczkzc+x++PhS5OiJCZnxch4NB0mE WEk4zcrVPKpV+v4i+nj1gagZ4aVipXp4rdg9eWQFRvDwxzyKUIHD78ahb7hg82jBSV0AzJxq vHu3mEfJSzKEf8nlWbKYfvp8fTEZTZPJ5OZ6dHszHN2cX98mi8XZeNrF/uO9BV/h7obVBZNE ZJUysdwKhhVDGJXsGVHnx6ALuSe8Aj/NY5cG7Rtj6cWEJnS0nGJ8NqYXlzRN6eWIETolUwI3 Q95KOSNqHj0qVc3iWJqsyEGREcElT9WA8CLmaZoRFo+S5DwumMIUKxw3XPaGCtzHUCXAe6Ey Jo3xa6VEtqwVk9HVuz8+vEg6s14hhcWKKV0TWWECAZ/u9PoukyzBOcSuRM3MyzRjOZU6deR8 MrlMlhPMyPkoGZ4Nz8kYX0wnw7PzdDxdjnzE4F1w4/n5efA8HnCx0pkaxv9+/WJJtj58/Nkq HD2hJI3ofOpYzjR1UWmYvOUA1LfK2YtuCY+R7FcN/RNet214Fn7FJV4Z46FOW2zhPI+13VjX sfO+eeaMhzPNy48HGdoG/21rH6ILsK6EBki5KLCSpm5Aq58Q1AbTBXvfSB1yPn8G5IKluM6B RL9qnGdAIBoh7BncOlCXjSPLnJOfAfsnZMmRZKPs/b20zX0iQ7PgwE46v89KqTDww/OakgCq apGbTFISuyzJeDgYxuuziolCbgWYd8JJDkQLx7Y3QQbTXJQ4j/mSBhJmRcWFJXx7TOzxzZr/ wgm2Y9cNFlov8wwWiWAmJudEDImV8S+IENp8HCeTOBnFlAwg05Hhuqb6UV74gH/H9cZW24d2 3+owvodRGyEFHT+Pbh9+dN4IITS61Y2PzcO+5YDA/k9/q2DpPKJkRvQK4wIGbFb+RUgtoPhm 6b34V8N12jpgE5S1oBurh4VZRmH86cY80QM7MFtLbs/1Lpu68hLWV7ky+yQrKXtx0c5oJqsc v1pJcWuFCNJjd2f0M5WpXG+m3YnT2sHdMjFXtm55MPhQ0E5yZ7Je/seIljW7L9gJpmuZcpoB m9if7PWZCyr3YjezutOdHJerGkb3XnsbaFdkkFgrLl73Yo/wxVpzAuz3GBPsKdOq9kRrvhdx WXJlZpp/4re3f4h2/Dw8ZhI94bxmCPiVwWBkEqlHhsq6WDKBeIokfoJnXCDvpBygBziBqyrX AHAbgREBao2XMlvmDMGuRXUF8hE6BKyFK3AKnY4YJo/B2ODdH9tcs0KiG4V92o62qy50b/oO sJXKsVRf4VOC3to3b66+m3d2ZBXO7N667aKjnQ33ULi6V3+YyN1E3imh7M6xtHiTwM7KlFdY PeptOI2/Y6FKJvR8EzwH913KW1KoIYSO0EpWx1SHxID7kHLAHS+KgrLYKXOcoOhw5jt8boN2 dHlrrEifyZZ2DmBDjorMFusl0KHGleawP++Mebp69DUhvC7VXXcVnoA1C6c98DfQ2pGODN8i 3Xf4alurFadVGtqoXY0bF64Dd0KjEWhvsI30dPjN4vZaSk4yGHn0E2gH9dq73GDLWWinHNZ2 UD91uYSiUtA3G3npFgLyFPoFBiXoK6CUveCb/1TsrIRzjkrh9Rbc0ZD7V6lYcefkv77yaKhP KSyFXTgdbaehNltiHYclWjf6sKbbZAuwjXR0zXhh3KXrIQtbctPTl26qjjTjh4UNaM08F3En szq8/aPKZrbVyC2duMFWMOl9aHPTE+ZvljKhv1joMfqsN3d0+AYsfGvTNwI6fgNWK/Omwj4h c/TsELY7I47qIl+nJvlblT59bLoCudnQKHVvU7rW/cFQ7P5gqHZ/MJS7PxjqfTr4QX+l0ntJ afQdiLgO03ruqB78Cw70HVXawDe9jU7vM3P3QT31G5ps7WO/+mrRdxBp/Azfhcbb/sfj6n8A AAD//wMAUEsDBBQABgAIAAAAIQA6gUBz9QIAABAMAAASAAAAd29yZC9mb250VGFibGUueG1s 1JbRbtowFIbvJ+0doty3cUJKKSqtKBvSbnqxsu3aBAesxXZkO6U8wy73HnuDvc32Hju2k0Ah 6UjVbVoilHCcHOyP//zHl9cPLPPuiVRU8JEfniLfIzwRC8qXI//DbHoy8D2lMV/gTHAy8jdE +ddXr19droep4Fp58D5XQ5aM/JXW+TAIVLIiDKtTkRMOg6mQDGv4KpcBw/JzkZ8kguVY0znN qN4EEUJ9v0wjj8ki0pQm5I1ICka4tu8HkmSQUXC1ormqsq2PybYWcpFLkRClYM0sc/kYprxO E8YHiRhNpFAi1aewmMDNKDCp4PUQ2TuW+R5Lhu+WXEg8z4DdOoz9qxKctx5yzCB4t2Fzkdl4 jrlQJIShe5yNfHQGZ4hMwnPUh+sZOvcDkyBZYamIrh+MXDjFjGabKioFw9wN5FQnqyp+jyU1 83FDii5hoFBzBD9YHr6LhKCHx5Ho4Jne40hi8wx23oII5Kkzw/QDp5wDEDPKiPJuydp7b2du HtgnEgGFPuoBiRg+EdzFzUTQyxB5CxOPxtPplsgEIueDOCwjWyIXZaSRiF1/6PIcT+QTCNIU ompRR0W1vjazaFQHLrRwj/8X4piIQlIijTwaYURQIj10AZIwZRKBPLoIg4kFkU21ktIHsnCY dgulVRa9vyGLMdRvs2FE6AbKI7YUDAng0CyJxvJQa6pUJ038Ww4TzOaAokUPxiCcURjD6Eai u3UaEijaNYrYROI6sjUK6LDWcJ8wigtrOMcbxR1ldwW3IHCmb6GvVGb/89uXH9+/ln/qXnsx jaUPk+zBtTwb1TLou/Dj9vJcA6lKBLpCNBhMDaX9oglhP/AkIsPWOvDxiD4SucC8TSyubJxc TPn82bIZm7bar6UBJMyCwLhuDkhUbF5QLDO8gv7aUjUvBIILPZMFmW1yYjcs3XrMjkSAiz32 wdSiaQfTWSITnFEwlBYyU9tXrKd29pNnOKuRyIGfjCe1aLZ+csTG47d+Uu7J1NUvAAAA//8D AFBLAwQUAAYACAAAACEAf4tDw8EAAAAiAQAAEwAoAGN1c3RvbVhtbC9pdGVtMy54bWwgoiQA KKAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfM8xT8NADIbhvxLd3nNaJEBR kg6sVEJiYbUuvuSknn06u6Q/H4KgMLF5eZ9P7o/XfG7eqWoSHtzet64hDjIlngd3sbh7dMex L12pUqhaIm0+C9auDG4xKx2AhoUyqs8pVFGJ5oNkkBhTIDi07T1kMpzQEH4V981cNd2gdV39 euelzlu2h7fT8+uXvUushhzopyrhFv27njhKQVs27wFesBpTfRK2Kmd1Yz9JuGRiOyHjTNsF Yw9/vx0/AAAA//8DAFBLAwQUAAYACAAAACEALVt+qGoBAABAAwAAGAAoAGN1c3RvbVhtbC9p dGVtUHJvcHMzLnhtbCCiJAAooCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACk km9LwzAQxt8LfoeS921a29V2rBu6bjBwIKKwtyG9bsEmKUlqFfG7m3Z/cKJU8FW4JPfc87u7 yeyVV84LKM2kyFDg+cgBQWXBxDZDT49LN0GONkQUpJICMiQkmk0vLyaFHhfEEG2kgpUB7tgL Zs9VnqH35SKM/WWYuyP/NnGjOAndJAliN4rmaboYpTd5GH0gx5YWVkZnaGdMPcZY0x1woj1Z g7CPpVScGBuqLZZlySjkkjYchMFXvh9j2tjyfMMrNO387LMfoNTnYWetUexUpW5U1WsWFBeU M/NWA0b470kGFNeDGUcYzqiSWpbGo5IfOPb+iwPNmgiyhZ6r86KHvLRt67Vhj7BZ3+EgTRMs CAddEwpDyV/poeqrahx4wf94mChlTcyuA7vG90QZAWouhVGyGuQ5duqHsVuiZ9ubfb84GNIt HaZ26dxa2f/KsOF+HfV/n8RJ+VwUf9uqLj7b+uknAAAA//8DAFBLAwQUAAYACAAAACEAgJe3 kBwPAAC12AAAEgAAAHdvcmQvbnVtYmVyaW5nLnhtbOxdzXLjuBG+pyrv4FJVDjnsmKD4J9d6 tvSbmtTuJpWdVM6yRNuq1V9Rsr3e47zMPkIea14hTYCkQZEECRAQWxPvYT0iSAj81N3o/tBo fP/Db5v11XMYHVa77W2PfLB6V+F2sVuutg+3vX9/nn0X9K4Ox/l2OV/vtuFt7zU89H74+Oc/ ff9ys33a3IUR3HgFfWwPNy/7xW3v8Xjc31xfHxaP4WZ++LBZLaLdYXd//LDYba539/erRXj9 souW17ZFLPqvfbRbhIcD9DOeb5/nh17S3abY224fbuG77nfRZn48fNhFD9ebefTr0/476H0/ P67uVuvV8RX6try0m91t7yna3iQD+i4bUPzIDRtQ8id9Iiq8Rcn3sicnu8XTJtwe6TdeR+Ea xrDbHh5X+7fXUO0NXvExHdKz6CWeN+v0vpc9cQrfl71yk99gEs1f4Kd467DQXQkYS/bQZs1w iH/ft1/1tEdiiV4m+UXiLrIxNBlC/jvTkWzmq23WjRo0PLigEm3k+2/R7mmfDWe/atfbp+2v WV+xZkqMzPKo5vGvdpDqoKC6vzzO92HvarO4+fSw3UXzuzWM6IU4V7FE9j6CtZjfHY7RfHH8 +Wlzlfv0aXnbs+gt28NqCW3P8zVcscae64zGvev44c3T+rj6MXwO159f92F6z+PrXbRa/hS3 reM2du9xs1+nd3iBO/WHfZu1rJ/jhhX8ib8R/nncr8HIWIE1sCyL0DGArYuO6eOEPQeGbrbJ Lt49rdfhMevxc/hb1vT1y3+z639fpL2sw/vk9v0/o/htjoBF8je9B74iHtB+B79D37PiXq7f blxtY1ziflgrfHicbx+ojX67O+k9Yl8SzXbb4wHunB8WKxC1X143dzswFPDoEIDOXVhtoeNl eD8HKJOvpr3AEACseKg8dISDzgHwEEFHYDgC7Ghzt+DZHHhM7lwdcveHBrkj8FOKwIubVcD7 D8hp7E/AlJgJX/6anPz1CxAyiYR5GKbfZzA8aFTZdm0RpLRZBVJ9yuwUwGTwagVzp0E6+7Yj gpI2q0A53j1FqzC6+jl84eTz5OoCzPLJpUc5oXULOLMrWnH++kWHHegPxBNQ3KyCdF7n2SSU vyYHKbj4hSk8vqIZUh1TuuMJ5yXarAKpPjvgF8BEagdcRzhL0WYVKE/Vm8nnydX2dgDC6ROh RWsHPCKcvGizCtJ5nVexA+CXcuFE7J9yH2FI3Kc4umDuQC66cGdDyx8GbF5SjS4Gfdue+jay 6IIPFnyPSheSYIH5u13ZFR4X4gRqwJzYgySUOrna3kqURQmx3dA8tTXyFnjcbNtSw629zudj UEwxQA6gga0GkL6ZHI9HzwPT9xw1YE50y5TG0cHl+CB2pWuNc/qKJly3xmHytnnBci1FU65P 4/D4zjlgAkVbfSaNw+QJ87h5rqIJb69xkn6tXWTNg8ADQnjQzq91JkPLGXhN/FrSlGpbhovV Zp5Q9MAm87T5X8hfmxBE/I8Us96C2KOeuKa+KBk05F7Xu5cw+jE8HsMoG2nuDewP2XUB8c+/ QR0XXf4KBceQjGRe4V+7zXybjTT3Bv2yN4hWD4/5tYvcK5wywsAgx53D0OlaRPkrFF23WcNX EMqQUzb+wtILP/w69rV8+AX3Sp8QudKvUMd6lr9CwdfRJkRe2RuIhYiyjbwqNxKiojeiRYj8 svELhaiOuiv/BQoegz4hCqRfoY4yK3+FwvStTYgGZW8gFqICF1UhRPAqHDdUSxz1SybYieX6 fssJ1p9604kXJPQTv7ZaXJbWItekDNKCXNesS/uBl1j39EbemsatvBrXrktLLqDwq87dEknp 28NfeGGarcAv3xMXko+q1+9psxRQyQL+mdzygofBoohOqKcapG3bFiFNm1WQbu/I4yWr6iAd OEJI42YVSPUF2wX/y+qKUK6Bsu95IihpswqUZ7IDBScRrx1w+sKZiTarIK3bDhSdVrSJKy4R TmK0WQVSfXag4EJjtQNuIJylaLMKlGeyAwU/H68dgIRRkcWlzSpIt7cDknEHy5jNLViPraA/ cvqMu1FdsHaDaWBNJ43ijqbEXvt02FwUASkHKj+RPruCJ87gcSEOZL+pAHMmK4EpauBxs4mY KH65qUiXbq/zeGOAHEABcLYqgqVP4/B49DwwwF+oAXMmjcPkn/O4OX1FE65b4zB52zxArqVo yvVpHB7fOQeMr2irz6RxmDxhHjfPUTTh7TVO0q9lW114v5b0vREhM6edXzudDm1nRIaslwo+ fZb813Cxsb1fW8MP+cLs2ri122mZd4QdXDvkqDcsoNhVnWV9FpbzhzO5g58TJYseu8jVYGL0 oE1CqmO7hx071QJIUfnc5sDUsu0rdsOroTTvpecnSbkdSpyPbg5lPZu+qNtejTNGr94kpDqs AHX0qyHFFQeYA1OHFXDj0EAApfHIoY0V4OIGcyjrsQI0lKjG+XIiDa+QuUP8ABIz3EksRuoF JUbjMeTGkncGvWF9iG4zdfgo+Z1Bh6onDa0EjxtG/z+r2GIgpGo08+cAQuXNJ9B0lRPDA2Pe Nz8l/pS98wQ15q93v+VLkfvJOykqG6vza1bvDHpENzMAoXhaA+mdQX+h9KScxnGeMCqNuxy/ 1i/6tTM3IAOvpV8LmTNjx3GTcmsVDHo27cbacI5CafxsgosQf/drm1aL45hwVDr/7tfe9go7 QHiFoyR2t0tQ75khKrMsxzqj0jiMHHI2pWGIJHExwgk0GCJJSv+qmKLTAPH/oKgXb8Ivx68N Cn6tTUYTMvCFJbpoHnRV6d/BxCbBrJSpPZf/ij4DBNz430Gv6B7GLB2lltrVSpDoWB4ylQ/S yHwU9rHKgso8ZK2gNuR5a+STusjVq0Fn9KBlITUwaWmC1FBmiDz1Jwsp88URSimlmaulVJmF Ng9pd3RzjeLjSQaRlVJGWSOUUlPJIOallFHdGCE1lBRiHlLGgyOEFE/+R73iS+aes1JffO65 bU8G1tRJypyp7ql0xuNxMBk0Ys4R1XLJvP10KuDjRmmuveADw49TG0aww1feU8slweMIdezp ZHgCCLE8snCByqNJSBullqT6CH/TyJyvLvSeWk7JCh2sganAoRFrENcIzzsackvpHMlvUmT/ YOmSsCAsKGtZI7J4ogmxFeDSXUxCqsMKmIom9G2A4hJkzIGpwwq8p5ZTgyrc7qjDCuAJLU6t AHyWKQpJiocV2n13Zlt+y12sAZnaZDybZiYX5v/iYYXn9pdbxQWGzx6Mj200QPU2Mis8LmZz y9XjA6g0EEPUHc/Ig3TG5YJTDc+ntXLefgJQd2XYcgDhSiRnsoNBvZQp/EaeuKR6cY43KvVC mV2TTlYwk+ne+t7IjebVC1l2DR71MptdI6lefIo4ptnrclJpkiM5ckz3cDQmXr+lf3qhVcvR MN3d5ozXkDSdptB8Wwfm1SB9gaR451mydZAayqrRR4fhyWSvgbJzUvzUZ1emxTvPfa9B+gJp cex24KJo8Y7z62uks3NavJ0d4MMI5nd1R4LVIP3tEOPF8wj7ZAaFGX1hio0oiZ8MB8PZpE9r /+RJPEbCn2MTas3PR0+Rq04/rTtkrrIAtYzvUZ8slQfPAN/ZiDOvgZKeZlcNZd1hd5VQnpqS 0l1ABZ5CFlS0afz0hD0BrAPFsrv59IUm5SZkITVAPutJ46en/lVDWncoYKWkmocUbRo/PYWw GtK6Qwo7hBSvZ0GE3Ffh0ESI/ZIie/T41g4hRZvG7wVQvL1aSmkzLHY8zrcPq+3DbQ8PpGjT +H03E7vUP+CXbWgzTkjRpvEHtrD+MG3GAqls9k3xTFYoIT90pn5S/b08j18UZIwcJxiMUAcZ 9LDwarNTd5Z4pSWXCTLESRVIQwo4B1hkr2mziiaohRRiCNEGEKZCXHlvVwygkXChUZ5BOnHB X5CmwpHApgJbfeprICzQwgjEsWm13SucHd/U3TKhvmjDADzBqlh9jTj9OtTXVGiqT30NOPc6 1JdGmNXqqxyAmlBftM48npDzVH3hs1TifPFYUzj8qe+7vstS3uVd97FnT70ZSdYX8mUrkRT5 eZuSUieBj27jVhX/U8Z0yLKuWF15WDAV+ALKMZCaMZEFFa1zbypCknfuZSE14u7r2OqEJ16S hdRAGKBnwcVUBGVeStGGBZe7LGgkUNCh+HgiLVnFNxBA6FF8U7GXecXHG1Bc0LKgbIhRPGHW m/m246e7astDjMfXu2i1/OlpfVxVVRP1B0Niz6gDms+lof77kdWyYZlmhNYyPUdq0rkjidMA MI8Eixt4JNhaTSskGtEQPA5m44Bva6dCDrd4pUQlFJW3pGIxYm49L0YGAtKvXxoRgzxAZ8nk E0ODZxcBD4zZvLz2Gsc8cF6guvPJc7idL/FOLFZc4ZvOM/x5gJTT6GTYMTE0XBmbjvP1eWCU k+EacV3tNQ5T9j2Pm/KCQ/s5DsRMiisvHmDqeyMXcumT8jDljiy9WuHCjock8PtpLj5Krjyu O1m9XCRdldJQ9RmtdVsb+bfpykFFekGne3cLefNig4qWB7+sbblaZbChM1wjhZdSmVIrdDrU F9YARWaPNqsEZo0me0n17c5zrpG+y9pNq1UG9ajvpeyd1QqdDvXtdKespPri5aQd4eL+BVXf KZ7Q6k+I60F5SFGSSz0DPe5PpqMZqakO2SUDjcU/55keAzkCjWwGH3WarQ7ZPlpnLjmPWnez PI8byoKRqYKBQ9Z5Rbv3E1rjHL9kryIvOWZd5vYah5WRRllDEpPGIashyaDBMMeZrSHZXuPQ MtKx36sS3JtgpOGcERgK/P/T8rbHshg4zvrTEhrp1ibiJSwt3Bpb4NxzrAhM+XN9wXMsV6D0 OdHXsZzy0seoww1sZNkoWZ5I6WMpF1P2GGPlSx9jSegVX8eCgvLnaFXOiufYsbjlz9Gk+Yrn 2GFX5c8JfoOktH3pc6LfLik5WvoctDFKvwxPAC0WoNIHRbgQgbS8bQb4x3MYQV5PCHKb1tHP NgVwbUymk1HCukjaFN/Lfcx64fJ70lszzWjeC3tzmhvTohcuw6ZFL0yJ2o6F6VTbXpiKte2F KVzbXpj6Ne+lQhuJwEgNRNohsFJUyqu+T2CmRFaDiMyUyCwSgZ2iB3BXDVRkp3Lmm3VwF0ZQ VePj/wAAAP//AwBQSwMEFAAGAAgAAAAhAJS2q24QCwAAoU8AAA8AAAB3b3JkL3N0eWxlcy54 bWzkXFtz27YSfu9M/wNHTz0PiXVxrMZTpSPfGs+4rhs57TNFQRZrklBJKo7767tYgBB4gbgw 6U47xy82SWA/LHb3W4DG8ocfv8aR94WlWciT2WD0djjwWBLwVZg8zAaf76/efD/wstxPVn7E EzYbPLNs8OOHb7/54ek0y58jlnkgIMlO42A22OT59vToKAs2LPazt3zLEni45mns53CZPhzF fvq4274JeLz183AZRmH+fDQeDk8GSkxKkcLX6zBgFzzYxSzJsf9RyiKQyJNsE26zQtoTRdoT T1fblAcsy0DpOJLyYj9MtJjRcU1QHAYpz/g6fwvKHMkRHQlR0H00xL/iaODFwen1Q8JTfxnB 5D2NjgcfYOZWPLhga38X5Zm4TO9Sdamu8NcVT/LMezr1syAMZ4P7MIbJvmVP3ice+zC2p1Pm Z/k8C/3Gh5t5kjV3C7J6hyMBGfnJA4j94kezAUve/HRWBtG3luEKJPvpm8V8AB2PUIPit6HJ VuslW1XUBoOB+RbSi2BS2PqGB49stcjhwWwAnog3P1/fpSFPwVP29xYsDj+GqxUTPlu0Szbh iv2+YcnnjK3293+9QgdUnQO+S/LZYHwyRUtE2erya8C2wnUALvFjQL4VHcB44OIGDo5nVwHB m38WCCMxHTCPTUI3zBdB5eFwX0HuWIzXaSQT5x7Hzj3eOfcAKnDUY+rcAzjNEeM9uUfgozOR 29+EWe7d7uIlS0UfgmfYfQxloZG6i0HLdRJzH+YRI+pEtcdit8xfQ6wf7YB1gASI47Xb4ALI q7OQM7569u7Z19y7ClPwj+sEqC7vLPbj85alUZg8Ckm7cM+r798fYK5FnvLkgQhONeRlvN34 WQipmuTzVLH3ItF6P6XhiijYbsi7yA/YhkcrlqIpGuZMzGItIdgl3nJvsfUDyALNgzMMglmi Lps6DTfhwyb3FhtMOa1gJ5bUZtdEyhd00y7cokqbcLsNjWk6waxXnye78J/ZKtzFxdTYsrEJ gWmyAwQOsU6kJgRS9gsgkO8tCwpTPnL5S+UTxo85+wXyhY0pJsAM/1L5hPHjeuCl8tE/DtsX Vw8u8i9gn+SRwmvqHLvnPOLpehcVMdAawVPnCNYQNBWcg1jLJ5HE1DmCS/TpzYMAki/FT51t sedRBxRnc0gUDDa6Ls5GqTKrg0bOBqpgjR2wunGtA5Az6X5iX0LxGkYEZGVx5rjQwLxw56f+ Q+pvN60BPrHMCXW18euO29a8RhYaW1iQinKdwOuCjHk0tIklFqloysNwJl3cq1sqdHCvbjnR AahbcnQAsviHfS2nsyQdpHu6dMByJmqd19DtyFw9deZqDeSWFHrKpIQVmSV67b5Qz6QEFGcD 1TMpAcXZOpXsNipcjoDVWyYlYFmyht1GJqe6KOWcSU0gTd4EjfohbwJQP+RNAOqHvAlA3cm7 HaQ/8iZgOXOD5lSTvAlA2MRlc6iBTPImADlzg2Q79RapICGUcni72wN5E1CcDVQnbwKKs3Vs 5E3AwiYunlDB0lRHwOqHvAlA/ZA3Aagf8iYA9UPeBKB+yJsA1J2820H6I28CljM3aE41yZsA 5EwPGsgkbwIQNnHhhkbyxqh/dfImoDgbqE7eBBRn61QIVS9SCVjOBqpgafImYGETF2dQWOjc Lkr1Q94EjfohbwJQP+RNAOqHvAlA3cm7HaQ/8iZgOXOD5lSTvAlAzvSggUzyJgA5c0MjeWMw vjp5E1CcDVQnbwKKs3UqhKp5joDlbKAKliZvAhb6S2fyJgBhk5cCuWjUD3kTNOqHvAlA/ZA3 Aag7ebeD9EfeBCxnbtCcapI3AciZHjSQSd4EIGduaCRvjJFXJ28CirOB6uRNQHG2ToVQNXkT sJwNVMHSVEfA6oe8CUDomJ3JmwCETV4AhFHkYqZ+yJugUT/kTQDqTt7tIP2RNwHLmRs0p5rk TQBypgcNZJI3AciZG8QBYzhBevh4qnGqYWRxAuo5g+JUAxlwbDESFVAp+ImtWQqVPqz9dEhH wEJDB0SLe1BVPOP80Ttw+tww38TiIGSocBmFHI/ZPFfP7UymBw5V3/9y7n2UJSG1fuhS5VIO qLExy2VElQmWX8E4czjUPRtszdM+UEojiotUDQw2vIaKGFXXIjqLQhfoi6U+6jb+31ah4t9Q E7Yq2gyHx+/eHV8OpUZQsCSEpJUSpXkayrIZVXskr1FW9lchaTyWMrK/zkV1E45gfKxmShYg 7euaoOTo80I8M2qMUJ2WCdAqqykeYbGPqfS+HAfHl4iz9i+eDyh0EgPiuxwO17ObL1EhCucL xq4aqHlL+F3K+RqBVc1V/yqPrSorAyx9KJP6RVQ91bzANhuidKBor2Z2fL7xU2VRXSyFmpXX FHjL7l3v55MrYDZspSbrkbHtLZgF74mLG5jbDK8yeYoehrJkUF4I7g81hLJz3QYotWaDsu/e Q8UiSIn9P3j6URTOiZgsbGI+vFQld+I5ern5UPcMstwQeAblcnJwSxz98lxqEYiDuMV0Hl99 Pzq7EGKxK+Y7qLHDo6dqXowYOpHySjGE9zrGycTqNBOlQS9OM/nXOw3GyH/fadrdIYDw9YNc Fp9Z8oYq6dQHSgXt1xxFNfJ0Kw+bocfvT7MW7l64dAtlwPgtdJ+LQh8RLpYxYyHQwYTnYRPp 1vUBFhVR+y271KRU7oO38mUk6R/+gDotGBKUHeMRCJmZV199CQLPz1kU/exjssj51t40YmuR jkDQaIjbmYqoJc9zHtv7p1j/YxUA02oORl4KJezznWCFoipdssz5LRfbgJpnQNkT3re4AnWm 7WMrrX106hc1dKKETtXOVVc9+xI71QCHdyAp2pdDKmGBS2I5N/wGy2BSFXYUTrrlUHM9gTor ABGzrVqG6C6ikXwKLTewBIJZNluXFw9GFlCrplIWUGmwUsoNiyiQXSS0orpbDgYXJa6TKyPr d7ZssLYonva+g2f/a80ZrXNaz/QjyPSgi0z8813OVRO12PXXwGUibLAVXtUbiVUarBmmuIEU F592ojzfz2/EFKloBdeZR+FDIr4xAIBoTwhaZcKyUcqridngN5au/MQXA1Vr4eIOelnVhjD7 LVYo0bR2cVWZWXVtdbvJoRupHBva12YNK/+llI0LmfbBH47PmgfpyOzgPtUdivjmQfN2RAVM PYi66lVfgGvFvPYleGtk/BEUTgnJYHPYK2vaG1uvgpNaHPCwDevrxr2u7StHu66tZuxLEfm2 oBpI8m5THLnvmRVh7M0mispg2QXSwdPKdCLCq939mjlBv0iqKqMfNOnzEl64PBtdnqjCcWWo EGWHRF4oKRDsMljSLMTXQKrvLUpbzapa6qE39s71TrSSxe3KNW1oJetU1n1lFzV3q1UXxc+1 NO4Ki/RrPvy37yf1R2GKwePagfpOxtHAcltoM/CkJwMrPvr/MrBKOKUs92ov3cRqX28Da+kd /1Wwf9zERia71rdmUK6InewrFjM+FbOaS+3pWCX9ADaysMzb+ZH6LgPILcgYflu2npZU6EcR 54nYcdRUPpPP5Gck2hQ2OUl1FEL37FbmouFoejI5kzPSyEXwsSd/A5+MMhaj+xv4LSj5GMe1 X5mOGt4xyXuOmekAsVfVq4a+OW9do9/AUpNVer39z09jj9SqNwT7D7xUp3L/BO1cj6piG97w 2rbscPPL4Xx0UXK40pvMIfxcXcnnu2KNKj6tBu9rZHyhm7rG1y1XMVqLLuOzKhbd1NsmO2EM z0ZXF+rfNZYg+kf/uVFMTvbhbwAAAP//AwBQSwMEFAAGAAgAAAAhAHao89+UCwAAklIAABoA AAB3b3JkL3N0eWxlc1dpdGhFZmZlY3RzLnhtbORcS3PbOBK+b9X+B5ZOu4fEejj2xDXOlJ+J qzweT+zsnCEKsjimCC1JWfH8+mk0QAh8QGyI9NRsbS6KSKA/NLr76wbN1o8/fV/GwQtPs0gk p4PR++Eg4EkoZlHydDr49nj97odBkOUsmbFYJPx08MqzwU+f/vmPHzcnWf4a8ywAAUl2slmF p4NFnq9ODg6ycMGXLHu/jMJUZGKevw/F8kDM51HIDzYinR2Mh6Mh/m+VipBnGaBdsOSFZQMt blmXJlY8Aay5SJcsz96L9OlgydLn9eodSF+xPJpGcZS/guzhUSFGnA7WaXKiF/TOLEhOOVEL 0h/FjLSmRQOumnkpwvWSJzkiHqQ8hjWIJFtEq60a+0oDFRfFkl52KfGyjItxm9XosIZnVKbY 4DJlGzDFVmBNXMNmzNSkZaz2Qdp3a9WqxNFwlzLaIlKEWQNlCWXMYiVLFiVGzH5bY28uxEMX //6civXKLGcVdZN2kzwbWTIsPVY2PMLIs1XLvATUQvdhwVZ8ECzDk5unRKRsGsOKNqPDQHrk 4BNQxUyEl3zO1nGeya/pfaq/6m/4cS2SPAs2JywLI9iex2gJ7HLHN8FXsWRgyc0JZ1l+lkWs 8ebiLMmap4WgX1XagYSMWfIEYl9YfDrgybvP52UQc2kazUAyS989nA1g4gFqUHxamqyMXmpU RW0gCKCLB0WbsCl8fivCZz57yOHG6QCoFy9+u7lPI5ECl22vPfBl9CWazbgk6WJcsohm/LcF T75lfLa9/us1UqSeHIp1kp8OxkfHaIk4m119D/lKUhXAJWwJyHdyAvAIcLqFg+tZV0Dw4n8L hJHcDtjHJqELzmQWCXC5byB3LNfrtZKJ94xD7xkfvGdAsvLU49h7BiRxT4yP5BkhQ2cij7+N sjy4Wy+nPJVzCJ7h9jGUhUbqLgYt10nMY5THwIMknaj2eFhP87cQy+I1sA6QAHG9bhtcAnl1 FnIuZq/BI/+eB9dRCv5xkwDV5Z3Ffnld8TSOZLLcnKyjLa9+/LiDuR7yVMgqqFdDXi1XC5ZF UBr2KvZRZtvgcxpBxUQS7DbkfcxCvhDxjKdoioY9k7tYSwhuiXcieFixEEvKpsVZBsEsUZcN gCSKv42eFnkAhYhMOc07YYEdOVKbWxMlX9JNu3CHKm3C3Ta0V45Zr75PbuE/81m0XhZb48rG NgSmyQ4QuMQ6kdoQSNl7QCDfOwoKWz5y+b7yCevHnL2HfGljigkww+8rn7B+rAf2lY/+sdu+ WD34yL+Ek3xACq9j79i9ELFI5+u4iIHWCD72jmADQVPBO4iNfBJJHHtHcIk+g7MwhORL8VNv W2x51APF2xwKBYONrou3UarM6qGRt4EqWGMPrG5c6wHkTbpf+Usknzt2LzQwL9yzlD2lbAUP zlqKjYljT6jVxq9r4ap5rSw0drAgFeUmgccFGQ9oaBNHLFLRtIfhTvq4V7dU6OFe3XKiB1C3 5OgB5PAPdy1nsiQdpHu69MDyJmqT19DtyFx97M3VBsgvKfSUSQkVmSN63b5Qz6QEFG8D1TMp AcXbOpXsNipcjoDVWyYlYDmyhttGNqf6KOWdSW0gQ94EjfohbwJQP+RNAOqHvAlA3cm7HaQ/ 8iZgeXOD4VSbvAlAOMTncGiAbPImAHlzg2I7/RSpICGUsvu42wN5E1C8DVQnbwKKt3Vc5E3A wiE+nlDBMlRHwOqHvAlA/ZA3Aagf8iYA9UPeBKB+yJsA1J2820H6I28Cljc3GE61yZsA5E0P BsgmbwIQDvHhhkbyxqh/c/ImoHgbqE7eBBRv61QI1RSpBCxvA1WwDHkTsHCIjzNoLHRuH6X6 IW+CRv2QNwGoH/ImAPVD3gSg7uTdDtIfeROwvLnBcKpN3gQgb3owQDZ5E4C8uaGRvDEY35y8 CSjeBqqTNwHF2zoVQjU8R8DyNlAFy5A3AQv9pTN5E4BwyL5APhr1Q94EjfohbwJQP+RNAOpO 3u0g/ZE3AcubGwyn2uRNAPKmBwNkkzcByJsbGskbY+TNyZuA4m2gOnkTULytUyFUQ94ELG8D VbAM1RGw+iFvAhA6ZmfyJgDhkD2AMIp8zNQPeRM06oe8CUDdybsdpD/yJmB5c4PhVJu8CUDe 9GCAbPImAHlzg3zBGN4g3f16qvVWw8jhBNT3DIq3GsiAY4eRqIBawa98zlNobePtb4d0BCw0 9EB0uAdVxXMhnoMdb59b5ps4HIQMFU3jSOBrNq/V93Ymxzteqn785SL4olpCavPQpcrv+UKP jd0uI7tMsN8Q1pnDS92ng5X9tg+00sjmIt0DgwNvoCNG97XIybLRBeZiq4++jH+31aj4f2iC nBVjhsPDDx8Or4ZKI2hYkkLSSovSWRqpthnde6S+o6zsj0LSeKxkZH9cyO4mXMH4UO+UakDa 9jVBy9G3B3nP6jFCdVo2wKist3iEzT620tt2HFxfIt+133s/oNFJLkisc3i5nt++xIUo3C9Y ux6g9y0R96kQcwTWPVf9qzx2qqwNMGXQJvWL7HqqeYFrN2TrQDFe7+z4YsFSbVHTLIWalWsK vOT2ro9nk2tgNhylN+uZ89UdmAWvyS+3sLcZfsvUW/SwlCmHBlhwf+hyVZPrNkCpNRuUffcR OnRBypL9LtIvsnFOxmRhE/vmlW65k/fRy+2bZmaY5ZbAc2iXU4ub4uqnF0qLUL6IW2zn4fUP o/NLKRanYr6DHjt89VTvixVDR0peKYbwWsc4mTidZqI16MVpJn97p8EY+d93mnZ3CCF8WZir 5jNH3tAtneaFUkn7NUfRgwIzKsBh6PHbVqPC3QuXbqEMWL+D7nPZ6CPDxbFmbATamfACHKLc ur7AoiNqe2RXmpTaffBSPo0V/cN/oE8LlrTRvaYqM8++MwUC9y94HP/MMFnkYuUeGvO5TEcg aDTE40xF1FTkuVi656fY/+MUANtqL0Z9lUq49zvBDkXdTeTY8zshjwE1z4C2J7zucAXqTrvX Vqp9TOqXPXSyhU73zlWrnm2LnR6Ay9uRFN3lkE5Y4JLYzg2fYBlMqtKO0klXAnquJ9BnBSBy t/XICN1FDlJ3YeQCSiDYZXt0uXiwsoCumkpZQKfBSis3FFEgu0hoRXe3WgwWJb6bqyLrNz5t sLZsng7+Bff+3ZozWve0nulHkOlBF5X4z9a50EN0scvmwGUybHAUfqsPklUa1AzHeICUX76u ZY8+y2/lFuloBdc5i6OnRP6mBQCiPSFotQnLRilXE6eD//B0xhImF6pr4eIKelnVhrD7LVYo 0bRxcd2ZWXVtfbnJoRupHAe6a7OGyn+qZGMh07743fFZ8yATmR3cp3pCkb950Hwc0QFTD6Ku etULcKNY0F6Ct0bG72HhlJAMFru9sqa9dfQqOKnFAXfbsF43bnVtrxzduraasS9F1NOCaiCp q01x5H9m1oSxNZtsKoOyC6SDp5XpRIZXu/s1c4J5kFRVxtxo0mcfXrg6H10d6cZxbagIZUdE XigpEK4zKGke5K+BVJ9blI6aVbX0zWAcXJiTaCWLu5VrOtAq1qnUfWUXtU+rVRfFn2tpPBUW 6de++Xc/T5ofhSkWj7UD9ZmMp4HVsdBl4ElPBtZ89P9lYJ1wSlnuzR66yWrfHANr6R3/VLC9 3cRGNrvWj2bQroiT3BWLHZ+aWe1S+3isk34IB1ko89Ys1r/LAHILMoZPx9HTkQpZHAuRyBNH TeVzdU/9jESbwjYn6YlS6Jbdylw0HB0fTc7VjjRyEfzYE1vAT0ZZxej2Av4WlLqN69pWpqOG Z0zqmmdm2kHsVfWqoW/vW9fot7D0ZpUeb//129gjtZoDwfYHXqpbub2Ddq5HVXEMb3hsW3a4 s6vh2eiy5HClJ5lD+Hd9re6vixpV/qQhPK9R8YVu6htfd0LHaC26rJ9Vceimnza5CWN4Prq+ 1H+ucQTRX/rHjWJzsk9/AgAA//8DAFBLAwQUAAYACAAAACEAOowtPYgBAABaAwAAFAAAAHdv cmQvd2ViU2V0dGluZ3MueG1slFPJTsMwEL0j8Q+R79RpKFCipkgVKkJiE9vdcZzUwvZYtttQ vp6pQ6FQDu3Js73nmXn26OJdq2QhnJdgCtLvpSQRhkMlTVOQl+fp0ZAkPjBTMQVGFGQpPLkY Hx6M2rwV5ZMIASt9gizG55oXZBaCzSn1fCY08z2wwmCyBqdZQNc1VDP3NrdHHLRlQZZSybCk WZqeki8atwsL1LXk4hL4XAsTIp46oZARjJ9J69ds7S5sLbjKOuDCe5xHq45PM2m+afqDLSIt uQMPdejhMLTriK6oEN5Po6UVSTTPrxsDjpUKN9j2B2SM66vkwn+dSZvLqiBn2XF2Mjw/zWK+ hGp5KReYWzCF0hC6qsbl3Yg6rKPpd/RRNrN/ws9gt2snEALoP3HsZ1K51R3hB2NQdIKF/qMg +DTQsIzjENHmoAC1YvMAXRtqo7P9kOWvjvbDus3J94HSKEIcujPHo+6MuoANUssPMQU3cdB6 4aIA+MaW9+b19iZ6TCloH+6u0EHoxo8YfwIAAP//AwBQSwMEFAAGAAgAAAAhANBMer6FAQAA 3wIAABEACAFkb2NQcm9wcy9jb3JlLnhtbCCiBAEooAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAJySXU/DIBiF7038Dw33He0WnTYdi9NplnQf0RmNdwTebWQt EEDn/r2UrXVGr7yEc3g454V8+FmV0QcYK5QcoLSToAgkU1zI9QA9L+/jKxRZRyWnpZIwQHuw aEjOz3KmM6YMLIzSYJwAG3mStBnTA7RxTmcYW7aBitqOd0gvrpSpqPNLs8aasi1dA+4mySWu wFFOHcU1MNYtER2RnLVI/W7KAOAMQwkVSGdx2knxt9eBqeyfB4Jy4qyE22vf6Rj3lM3ZQWzd n1a0xt1u19n1QgyfP8Wv0+IpVI2FrGfFAJGcs8wJVwKZTBfjx8lNEd3Oi2L8MI6K+exuPstx 66i9zAB1yhC9ESULWrNTT7qk1k39o6wE8NGeTMUWopFRags2x7/1+oiBD1E/KukGR7tscAsj pANOfIOLOLmOu8kyvcy6V1mSvLXMxuQThuEdYgKP/Diyw/Aa5aV3e7e8R56Xel4/TnrLtJel /QOvcYVS/tYWWB1b/ZvYAEgI/fNLki8AAAD//wMAUEsBAi0AFAAGAAgAAAAhAGLp5Um/AQAA HAgAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAA ACEAmVV+BQQBAADhAgAACwAAAAAAAAAAAAAAAAD4AwAAX3JlbHMvLnJlbHNQSwECLQAUAAYA CAAAACEAw2Lgw9QBAACYBwAAHAAAAAAAAAAAAAAAAAAtBwAAd29yZC9fcmVscy9kb2N1bWVu dC54bWwucmVsc1BLAQItABQABgAIAAAAIQCkFdg6XiAAAPgDAQARAAAAAAAAAAAAAAAAAEMK AAB3b3JkL2RvY3VtZW50LnhtbFBLAQItABQABgAIAAAAIQCWta3ilgYAAFAbAAAVAAAAAAAA AAAAAAAAANAqAAB3b3JkL3RoZW1lL3RoZW1lMS54bWxQSwECLQAUAAYACAAAACEAz8BkTw8G AAD3EQAAEQAAAAAAAAAAAAAAAACZMQAAd29yZC9zZXR0aW5ncy54bWxQSwECLQAUAAYACAAA ACEAXC9q+vIAAABPAQAAGAAAAAAAAAAAAAAAAADXNwAAY3VzdG9tWG1sL2l0ZW1Qcm9wczIu eG1sUEsBAi0AFAAGAAgAAAAhAGNliGAKAgAABwQAABAAAAAAAAAAAAAAAAAAJzkAAGRvY1By b3BzL2FwcC54bWxQSwECLQAUAAYACAAAACEABLq7RxABAACSAQAAEwAAAAAAAAAAAAAAAABn PAAAZG9jUHJvcHMvY3VzdG9tLnhtbFBLAQItABQABgAIAAAAIQD0iQ0DdAEAAKkDAAAYAAAA AAAAAAAAAAAAALA+AABjdXN0b21YbWwvaXRlbVByb3BzMS54bWxQSwECLQAUAAYACAAAACEA dD85esIAAAAoAQAAHgAAAAAAAAAAAAAAAACCQAAAY3VzdG9tWG1sL19yZWxzL2l0ZW0xLnht bC5yZWxzUEsBAi0AFAAGAAgAAAAhAFyWJyLDAAAAKAEAAB4AAAAAAAAAAAAAAAAAiEIAAGN1 c3RvbVhtbC9fcmVscy9pdGVtMi54bWwucmVsc1BLAQItABQABgAIAAAAIQB78wKjwwAAACgB AAAeAAAAAAAAAAAAAAAAAI9EAABjdXN0b21YbWwvX3JlbHMvaXRlbTMueG1sLnJlbHNQSwEC LQAUAAYACAAAACEAvYRiI5AAAADbAAAAEwAAAAAAAAAAAAAAAACWRgAAY3VzdG9tWG1sL2l0 ZW0yLnhtbFBLAQItABQABgAIAAAAIQB9Yn6nzgUAAC4ZAAATAAAAAAAAAAAAAAAAAH9HAABj dXN0b21YbWwvaXRlbTEueG1sUEsBAi0AFAAGAAgAAAAhADqBQHP1AgAAEAwAABIAAAAAAAAA AAAAAAAApk0AAHdvcmQvZm9udFRhYmxlLnhtbFBLAQItABQABgAIAAAAIQB/i0PDwQAAACIB AAATAAAAAAAAAAAAAAAAAMtQAABjdXN0b21YbWwvaXRlbTMueG1sUEsBAi0AFAAGAAgAAAAh AC1bfqhqAQAAQAMAABgAAAAAAAAAAAAAAAAA5VEAAGN1c3RvbVhtbC9pdGVtUHJvcHMzLnht bFBLAQItABQABgAIAAAAIQCAl7eQHA8AALXYAAASAAAAAAAAAAAAAAAAAK1TAAB3b3JkL251 bWJlcmluZy54bWxQSwECLQAUAAYACAAAACEAlLarbhALAAChTwAADwAAAAAAAAAAAAAAAAD5 YgAAd29yZC9zdHlsZXMueG1sUEsBAi0AFAAGAAgAAAAhAHao89+UCwAAklIAABoAAAAAAAAA AAAAAAAANm4AAHdvcmQvc3R5bGVzV2l0aEVmZmVjdHMueG1sUEsBAi0AFAAGAAgAAAAhADqM LT2IAQAAWgMAABQAAAAAAAAAAAAAAAAAAnoAAHdvcmQvd2ViU2V0dGluZ3MueG1sUEsBAi0A FAAGAAgAAAAhANBMer6FAQAA3wIAABEAAAAAAAAAAAAAAAAAvHsAAGRvY1Byb3BzL2NvcmUu eG1sUEsFBgAAAAAXABcAAwYAAHh+AAAAAA== --------------080304030300090101060600 Content-Type: text/plain; charset="windows-1252"; name="Summary.txt" Content-Transfer-Encoding: quoted-printable Content-Disposition: attachment; filename="Summary.txt" Age-related hearing loss affects over half the UK population aged over 60= =2E Hearing loss makes communication difficult and so has severe negative= consequences for quality of life. The most common treatment for mild-to-= moderate hearing loss is the use of hearing aids. However even with aids,= hearing impaired listeners are worse at understanding speech in noisy en= vironments because their auditory system is less good at separating wante= d speech from unwanted noise. One solution for this is to use speech enha= ncement algorithms to amplify the desired speech signals selectively whil= e attenuating the unwanted background noise. It is well known that normal hearing listeners can better understand spee= ch in noise when listening with two ears rather than with only one. Diffe= rences between the signals at the two ears allow the speech and noise to = be separated based on their spatial locations resulting in improved intel= ligibility. Technological advances now make feasible the use of two heari= ng aids that are able to share information via a wireless link. By sharin= g information in this way, it becomes possible for the speech enhancement= algorithms within the hearing aids to localize sound sources more accura= tely and, by jointly processing the signals for both ears, to ensure that= the spatial cues that are present in the acoustic signals are retained. = It is the goal of this project to exploit these binaural advantages by de= veloping speech enhancement algorithms that jointly enhance the speech re= ceived by the two ears. Most current speech enhancement techniques have evolved from the telecomm= unications industry and are designed to act only on monaural signals. Man= y of the techniques can improve the perceived quality of already intellig= ible speech but binary masking is one of the few techniques that has been= shown to improve the intelligibility of noisy speech for both normal and= hearing impaired listeners. In the binary masking approach regions of th= e time-frequency domain that contain significant speech energy are left u= nchanged while regions that contain little speech energy are muted. In th= is project we will extend existing monaural binary masking techniques to = provide binaural speech enhancement while preserving the inter-aural time= and level differences that are critical for the spatial separation of so= und sources. To train and tune our binaural speech enhancement algorithm = we will also develop within the project an intelligibility metric that is= able to predict the intelligibility of a speech signal for a binaural li= stener with normal or impaired hearing in the presence of competing noise= sources. This metric is the key to finding automatically the optimum set= tings an individual listener's hearing aids in a particular environment. The final evaluation and development of the binaural enhancement algorith= m assess speech perception in noise in a panel of hearing-impaired listen= ers who will also be asked to assess the quality of the enhanced speech s= ignals. --------------080304030300090101060600--