Re: data resampling (Jan Schnupp )


Subject: Re: data resampling
From:    Jan Schnupp  <jan.schnupp@xxxxxxxx>
Date:    Fri, 15 Aug 2014 10:56:52 +0100
List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>

--001a11c2e90c6251da0500a80a0b Content-Type: multipart/alternative; boundary=001a11c2e90c6251d60500a80a0a --001a11c2e90c6251d60500a80a0a Content-Type: text/plain; charset=UTF-8 Dear Juan, you've had a lot of good input already on the important differences between downsample and resample from other colleagues. The only thing I would like to add is that you need to think about these things in the context of what sort of data you are dealing with, why you are downsampling in the first place, whether or why 1 Hz is really a good new sample rate for your data, etc. Clearly your original trace has a lot of "fine structure" at high frequencies, faster than 1 Hz. Saying you want to downsample implies, either that you think this high frequency stuff is noise, or that it may be signal but there are other reasons why you need to sacrifice some of that detail. The resample() function mentioned by Alain works pretty well if low pass filtering at the new "Nyquist frequency" (in your case 0.5 Hz) is a good way to analyse your data. But there may be good reasons to filter at even lower frequencies (and after you've done that you could use downsample() without having to worry about aliassing). Or you may decide that there is "real signal" at or above 0.5 Hz, in which case you should not downsample to 1 Hz in the first place. What I'm really saying is that, to do the best quality work, you should filter your signal first, before you do any downsampling, and think carefully about the most appropriate filtering which will give you the best "signal to noise", and what these filters imply for what sort of downsampling can be done in a lossless manner. If that's too much work, then using the decimate() function Alain mentioned is the next best thing. Cheers, Jan On 14 August 2014 00:05, Juan Wu <wujuan22@xxxxxxxx> wrote: > List experts, > > I am attempting to down sample my data from 300 Hz to 1 Hz. I just tried > two functions of Matlab: 1) a = resample(Data,1,300); 2) b = > downsample(Data,300). The results are quite different between each others. > > [image: Inline image 2] > > Apparently, the result from "downsampled" is close to the the original > data. However, quite a few persons suggested using the re-sampling method - > I get this information from google searching, and very agree with this > view. Personally I think the downsample method is too simple and very > arbitrary. I also do not believe the "Nearest Neighbor" method. I assume > that the method resampling takes both "FIR interpolator and decimator" > implementation - this is what I expected. Am I right? But now my output > from the re-sampling method is really very terrible. So I assume that the > resample function from Matlab does not do a good job for this. I am not > sure whether I need change to use other softwares or try other functions in > the Matlab. > > Any opinions or references are much appreciated. > J > -- Prof Jan Schnupp University of Oxford Dept. of Physiology, Anatomy and Genetics Sherrington Building - Parks Road Oxford OX1 3PT - UK +44-1865-282012 http://jan.schnupp.net --001a11c2e90c6251d60500a80a0a Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable <div dir=3D"ltr">Dear Juan,<div><br></div><div>you&#39;ve had a lot of good= input already on the important differences between downsample and resample= from other colleagues. The only thing I would like to add is that you need= to think about these things in the context of what sort of data you are de= aling with, why you are downsampling=C2=A0=C2=A0in the first place, whether= or why 1 Hz is really a good new sample rate for your data, etc. Clearly y= our original trace has a lot of &quot;fine structure&quot; at high frequenc= ies, faster than 1 Hz. Saying you want to downsample implies, either that y= ou think this high frequency stuff is noise, or that it may be signal but t= here are other reasons why you need to sacrifice some of that detail. The r= esample() function mentioned by Alain works pretty well if low pass filteri= ng at the new &quot;Nyquist frequency&quot; (in your case 0.5 Hz) is a good= way to analyse your data. But there may be good reasons to filter at even = lower frequencies (and after you&#39;ve done that you could use downsample(= ) without having to worry about aliassing). Or you may decide that there is= &quot;real signal&quot; at or above 0.5 Hz, in which case you should not d= ownsample to 1 Hz in the first place. What I&#39;m really saying is that, t= o do the best quality work, you should filter your signal first, before you= do any downsampling, and think carefully about the most appropriate filter= ing which will give you the best &quot;signal to noise&quot;, and what thes= e filters imply for what sort of downsampling can be done in a lossless man= ner. If that&#39;s too much work, then using the decimate() function Alain = mentioned is the next best thing.</div> <div><br></div><div>Cheers,</div><div><br></div><div>Jan</div></div><div cl= ass=3D"gmail_extra"><br><br><div class=3D"gmail_quote">On 14 August 2014 00= :05, Juan Wu <span dir=3D"ltr">&lt;<a href=3D"mailto:wujuan22@xxxxxxxx" ta= rget=3D"_blank">wujuan22@xxxxxxxx</a>&gt;</span> wrote:<br> <blockquote class=3D"gmail_quote" style=3D"margin:0 0 0 .8ex;border-left:1p= x #ccc solid;padding-left:1ex"><div dir=3D"ltr">List experts,<br><br>I am a= ttempting to down sample my data from 300 Hz to 1 Hz. I just tried two func= tions of Matlab: 1) a =3D resample(Data,1,300); 2) b =3D downsample(Data,30= 0). The results are quite different between each others. <br> <br><img src=3D"cid:ii_147d19c415775e79" alt=3D"Inline image 2" width=3D"56= 2" height=3D"189"><br><br>Apparently, the result from &quot;downsampled&quo= t; is close to the the original data. However, quite a few persons suggeste= d using the re-sampling method - I get this information from google searchi= ng, and very agree with this view. Personally I think the downsample method= is too simple and very arbitrary. I also do not believe the &quot;Nearest = Neighbor&quot; method. I assume that the method resampling takes both &quot= ;FIR interpolator and decimator&quot; implementation - this is what I expec= ted. Am I right? =C2=A0But now my output from the re-sampling method is rea= lly very terrible. So I assume that the resample function from Matlab does = not do a good job for this. I am not sure whether I need change to use othe= r softwares or try other functions in the Matlab.=C2=A0<br> <br>Any opinions or references are much appreciated.<span class=3D"HOEnZb">= <font color=3D"#888888"><br>J<br></font></span></div> </blockquote></div><br><br clear=3D"all"><div><br></div>-- <br>Prof Jan Sch= nupp<br>University of Oxford<br>Dept. of Physiology, Anatomy and Genetics<b= r>Sherrington Building - Parks Road<br>Oxford OX1 3PT - UK<br>+44-1865-2820= 12<br> <a href=3D"http://jan.schnupp.net" target=3D"_blank">http://jan.schnupp.net= </a> </div> --001a11c2e90c6251d60500a80a0a-- --001a11c2e90c6251da0500a80a0b Content-Type: image/png; name="image.png" Content-Disposition: inline; filename="image.png" Content-Transfer-Encoding: base64 Content-ID: <ii_147d19c415775e79> X-Attachment-Id: ii_147d19c415775e79 iVBORw0KGgoAAAANSUhEUgAAA2MAAAEjCAYAAAC/9tlMAAAgAElEQVR4AeydB6BdVZnvF0kgFQih hR6KtFBDDy2gtKggo4CKMgHBpw8Vx3m+ZxlHZtSnDpYR9aFSjAiIgKCAQgiahCaEGjGAoV1qaCEk QBqEvO+3d757d05OvWfvffY55//ByTl3l1X+a61vfW2ttcZzTz++4o3XF4ZX5s0Lb7y5KAxYY0AQ CQEhIATSQGDFihVhwMABYeMNR4Vd9tg/jSSVhhAQAkIgFwSeePThMGLkBmGNXHJTJkJACHQTAvCV l+Y+Fb7zvXPDIISlNQYMDOusOyqMXH/TsMYaYjvd1BlUVyGQJQIrgvEXy+CdZQuzzEZpCwEhIARS R2DhwoXhpVcXShlLHVklKASEwMABA8KQNU1GMr1rUMxlVoRly5aawLRc6AgBISAEUkUAZWzImuWT nD3rrrD07UGmsomEgBAQAukiAO8ZPOjtMHb3/fqV8AATlgYNGiBlrF/o6SUhIASqIYAyFsJb0SOD /EE0M/4TCQEhIATSREBcJU00lZYQEAJCQAgIASHQSQhogVgntabqIgSEgBAQAkJACAgBISAEhEDb ICBlrG2aSgUVAkJACAgBISAEhIAQEAJCoJMQkDLWSa2puggBISAEhIAQEAJCQAgIASHQNghIGWub plJBhYAQEAJCQAgIASEgBISAEOgkBKSMdVJrqi5CQAgIASEgBISAEBACQkAItA0CUsbapqlUUCEg BISAEBACQkAICAEhIAQ6CQEpY53UmqqLEBACQkAICAEhIASEgBAQAm2DgJSxtmkqFVQICAEhIASE gBAQAkJACAiBTkJAylgntabqIgSEgBAQAkJACHQMAgMGSEzrmMZURYRABQRaMsorMZdK1yuUXZeF gBAQAkJACAgBIdCRCAwaNCiq14oVKzqyfqqUEBACMQK5K2POXN55551V2gBFbI011gil11d5SH8I ASEgBJpAYNiwYRGfKU2i0vXS5/S3EBACQiAPBJCJXnnllfCtb30rLFiwIMhYnQfqykMItAaB2OyS U94wk3nz5oXzzjsvfPKTnwwbbLBBr/KF5efrX/96+NznPhfWX3/93us5FU3ZCAEh0OEIYAi68cYb w9577x2GDx8e3No8cODAcPPNN4fdd989jBgxovd6h8Oh6gkBIVBQBOBVyEsvv/xy4Pfbb78dlRSe NXTo0Oia86+CViEqFrwVA3s7lBVnAJgvX768yJD2lk3Y9kKR+g/6wRtvvJFrv81NGUsyFzqRMxdQ HDx4cLjrrrtCT09Pb+UZGAhGRfGUFW2gFq08tGPRmIPKQ6tUJvoQ43Dx4sVlvUWV32y/O/CfWbNm hWuuuSaMHTu2V+ni+vPPPx/OOeeccNFFF0U4IDistdZa7VdJlVgItBECCL3tIvjmCSsyzzPPPBPx qL322ivcf//9vXLRmmuuGe68887w6KOPtgXPfuuttyLFkbmm6ATfZz4E43YgYZtdK9Ff3//+90e6 SV6GhFyUsSRz2XPPPcMDDzzQy1yAE2HwySefDBMnTowYDEBw7Xe/+90qz6UNvemEpuwFy6N2yjQI EwfCWxGoaOUBExgZClBRGK/KU72n0oe23377MG7cuFWMI9Xfaq+79EUsyfSFHXbYIey///6rGHiw gM2cOTMcdthhq/TbJ554IrKMFb22jDcUR/hlOxDhoEuXLm0LIVzYZtejwHazzTZbxUOdXW7tkzL8 CiF72rRpYddddw2jR48Oy5Yt660AuKGcnXDCCWGjjTbqvV7UH0RBIddtsskmRS1ib7lQgImcOOWU U3qvFfmHsM2udX7+85+HV199NWy66aaZ6iDJGmSuWcBcEISmT58edt5552hQwlwQBLlHuNDUqVMj qzXPbbHFFtEzAIGAccYZZyTLm+pv43mmXAUrR+1kn3vuuXD99deHU089tfbDOTxRtPJQZTrw+973 vmiSzQGCmlmoPNUheuGFFyJP0b777tuRyhj8ZcmSJeHSSy+NBJvx48f3KgHcwyOPt+zxxx+PfhNC jYDD2Lrqqqsixa06gq2/O3/+/PDQQw+FAw88sPWFqaME1113Xdhtt93CuuuuW8fTrX1E2GaH/2uv vRYpFR//+Mcj5Ty7nNorZeSiIUOGhNNPPz1SylDMMLbAryDuEzHEGFpvvfUKXzlkPsK/WXpSdBo1 alR4+umnw0477VT0okblE7bZNdOYMWOyS7xCypkrYzAPhJ5PfOITEXNBEYO5YOF58803w5w5cyJB aZtttglXX331KuvIACTLgXHJJcGsNiHYGKxJrG/DWp5leWoWIvFA0cpD0Zw5bLjhhomStu6nylMd exSPm266KTfLT/XSpH8X3kPICV4vBBiMPXhluI6Qs3DhwugaFvrbbrst4LXHU4YCh+L26U9/Ov1C pZwiC/wvu+yycOaZZ6accjbJgS2CZjsoY8I2mz5AqmxI8e1vfzu7DNo4ZfjTokWLohqghHm4lC/Z 4D58rB0IZRvlsh0ImeqjH/1oOxQ1KqOwza6pkBXypsyVMSpUylzwnqCQwVywmGDhYSDgBUN4ciD8 OytQXnwxWChSfcoYVpOTTz45q6I0nG7RykMFwKdIjFflqd6tXDGp/lR730W5wtsOr8EQRJji2muv HSlcrBXDK3jIIYdEoZo8h5KGAJSlsMP6cGQpi9hrmuCjBx10UNPp5JXAoYceGhni8sqvmXyEbTPo VX8XQ4h7e6o/2d13kZ187Ty/242IfGoXwkFAGHW7kLBtl5aqr5y5KGPJosBQ6EQIR3R+lDGULj4I 8m79Sb6T1W/Lvm6BiLIWqfMXrTy0UZHwUXmyGjXtl64bdeA9e+yxR6Rw8RvPKRZoPPR4vFHE8iCL ggxTpgQzPjWf2zrrrBMpks2nlE8K7GTZLiRs26WlOruc2uSks9tXtRMCIJD7OWNkCnNBGOKTZDR+ nWfyIDMq285EsXcsj/yUhxAQAq1DwD1eGHzgPa58Ja/nUTrLOrz0Urx5UB75KQ8hIASEgBAQAkKg uAi0RBkrChxs3mF7cgRbSywSAkJACOSCAEsoLr442Jq1XLJTJkJACAgBISAEhECBEehqZWzu3BCu uKL+UMUCt6OKJgSEQBshwE70tjRNJASEgBAQAkJACHQ5Al2tjLFhCl4xCUVdPgpUfSGQIwKEKdpS L1urlmOmykoICAEhIASEgBAoJAJdrYyhhBXkDOdCdg4VSggIgfQRwAh0xBHxJh7pp64UhYAQEAJC QAgIgXZCoKuVsaFD2Xa/nZpLZRUCQqDdEWDjINtDxHaQbfeaqPxCQAgIASEgBIRAswh0rTLGOT+3 3x7sXDPbUrJrUWi2++h9ISAEGkXgnntC2Gsv7abYKG56XggIASEgBIRAJyLQtWoI6zWmTmWb/WBb XHdi06pOQkAIFBGBhx4KYexYecaK2DYqkxAQAkJACAiBvBHoWmVsyZIQvvzlEPbbL4Tzz88bduUn BIRAtyIweHAIeOa1cVC39gDVWwgIASEgBIRAHwJ20lZ3Eus1ttsuDhVii3uREBACQkAICAEhIARa hQAH0HMgvdMAW0PBh4Pq+YiEgBDoTAS61jOGVZpQxd13D2H99TuzcVUrISAEhIAQEAJCoPgIDDaX eVLhGjhwYFhiITzPP/+8LaV4K/C3SAgIgc5EoGs9YzTnsmUhHH10MGbXmY2rWgkBIVBMBGTkLma7 qFRCoBUIoGj96U9/CvPnzw8nn3yyySbLIkXsuuuui36vaTuNHXfccWHEiBFR8bTpWCtaSXkKgewQ 6FrPGJDiHVu8WLuaZde9lLIQEAKlCBCFxLoxvtlASCQEhEB3IkAIIorWokWLIkVsqS0mJVQRIlzx yCOPDGeddVZ0/5VXXonucX3gQDuXRyQEhEAmCAwZMmSVcOFMMilJtKuVsRIs9KcQEAJCIHMEUMC2 2SZWxF58MfPslIEQEAIFRACl6/XXXw9zbdH6sGHDwuGHHx4GDRoUCYEoXIQtbrjhhuGpp56Kro8c OdKUsBXh5ZfXCmeeOSNcfPEvI69ZAaumIgmBtkOAkOBf/epXtqHf+eGvf/1rWIsDQXMkKWM5gq2s hIAQEAIg4GFGeMdEQkAIdB8CKF7/+Mc/wo033hgpVYQm+uYdCIKELr5pC9tvueWWcMIJJ4R11lkn ur9kyXITFDcLu+22u9aRdV+3UY0zQoDxuNtuu4U999wzjB492qJW8g1bacmasdIdg8DWF6fmDUBG 7apkhYAQEAIVEZASVhEa3RACXYEAm3LsZ2frjB8/PtqgA0WMsEVkob///e9h4403Dj/60Y9sg7H1 w4wZM8Khhx4aRo4cYQrZO2HrrceEPfbQzmNd0VFUyVwQQBlDEYNuv/32VTbTyaMAuStjMBoYDlYg j43GCvTiyngd3PLJHYXyAEF5CAEh0B0IEA602BaKugUaBsyaDQjhyK93BxqqpRAQAq1EAJ7DB9po o43Ce9/73mjjjjgkcWA46aSTIgs9MhFyk/Ont9+O32ll2ZW3EMgLgb/9LYRttw1h+PB8cvQxmU9u cS65KmMoXwsXLgw///nPw6mnnhpZfGAw999/f7j77rsjZrPPPvvYdvO237xICAgBIZAiAhiCfv/7 34cDDzww2pUMfoQR6IYbboiEnCOOOCJsscUWKeaopISAEBAC9SGAYYhQxLftEFQ3Su+88869m3aw uYdICHQjAtdfH8LHP56fMtYKjHNTxtwj9uyzzwaYimueXEcZwyI0dGi8QxChiliA2NFEJASEQDYI rLvuur3e6WxyKE6qCDoPPPBAmDJlSthrr73C2muvHXnEbrrppnDwwQdHf2Mo8hBq95YVpwYqiRDo HASY6z0ypnNq1VxNkHmQfcDFl2tIAWsOU73dGQigGpjfpqMpF2UMJvPyyy9HyhWC0IMPPtjrbnfh 56qrroqUsQMOOCCMGjUqEpTuuOOOaEeTcePGBT5pE+vz1lsvTtU2NAqbbJJ2DkpPCBQPgfvuuy/w WbBgQRQS08lCEXVjVzKszbvssku0RsPDoF3oueuuuyJ+hEGIeyhuTz75ZJg5c2bYfPPNw6abbpp6 IxpLFAmBrkMAYyyHGOORZkyKhIAQEAJCwJTNrEFA4GF92B//+McwZ86cKDu8Yiho3GO9GNafD3zg A+aG/Hi49dZbI0UMoYgFrOxuwndWZI65lWXKKgelKwSKhYCPqx133LF345xilTCd0sBf2K6WrWrv vffeyPvlAiD3ULo432fLLbeMlLRrr7024keETiMs/s0C1V966aV0CrMyFeRPy9pwTzVZJSYE2gKB F154IRpXjzzySK8XqC0KrkIKASEgBDJEIHPPGEoXlukzzjgjsoShmCHs8EEQ6unpCbvuumu0ewmC 0k477dS7YHXMmDFh3333zbD6fUkjIImEQDcgsNlmmwU+8+fPD7fddluvl7rT6g7vwdgzceLE6Bwf jEAYfrgOH8IzyBa2hCRirR++cnUw91hXdvrpp6cOyXPPxYqYHRlkfC715JWgECg0AnvvvXfgw9j7 7ne/27G8p9CNoMIJASFQOAQyV8a8xlioISzSvj4M7xe7mx100EFR6CL3CSVCGIJ8XVn0R8r/mIxm +aScqJITAm2EQHJXwTYqdkNFhd+wSxm8Bn7C+jAWycNjCJ1GUeOcH5475phjouv8dn7VUGZ1PGx6 oEgIdD0CrM/EKCISAkJACAiBEHJTxhxsGDDbtvoCVQQlhKQ99tgjegTLNcJQ1kTE5PbbZ52L0hcC QqDVCDivwfM+duzYXmPP9sYAuPeRj3wkKiIHrGYtIObA2loNt/IXAkJACAgBISAEGkAgd2WMsvm6 DX67oJS0ROehjN15ZwinnEIJREJACHQDAvCV5O5k7nl//fXXe6vP7q4iISAEhIAQEAJCQAjkhUDm G3jkVZFG81GYYqOI6XkhIASEgBAQAkJACAgBISAE0kSga5WxNEFUWkJACAiBRhFgAw854hpFTc8L ASEgBISAEOgsBKSMdVZ7qjZCQAi0CQJ25rbtKtcmhVUxhYAQEAJCQAgIgUwQkDKWCaxKVAgIASFQ HYEjjwzhppuqP6O7QkAIdA8CldbLV7rePciopkKgsxGQMtbZ7avaCQEhUFAE2FlRu3sXtHFULCGQ MwKcx1pK7O5a7nrpc/pbCAiB9kZAylh7t59KLwSEQJsigCKmre7btPFUbCGQIgLs4jp16tRw9dVX r6J8DR06NMyYMSNceeWVq1xPMWslJQSEQAEQaMnW9gWot4ogBISAEBACQkAICIGWIUD4IYoYZxw+ //zz0bE/HpLIN8cATZkyJYwePToMGIDtfHl0FuKQIUNbVmZlLAQ6HYEhQ4ZkfuZoKYbyjJUior+F gBAQAkJACAgBIZAhAihbixcvDvPmzQvDhg0LR9oi0rXszB0/eH7NNdcMs2bNCuPGjQtbbrnlKtdn zrwtXH75Jb0H2GdYTCUtBLoCAc4gveyyy8LkyZPDzJkzA+MvT5IythJthQvl2e2UlxAQAkJACAiB 7kVg0KBBYfbs2eHaa6+NlKply5aFd955JwKEdWL8/Zvf/Ca88MIL4Z577glLliyxsOY1IqVs1KgN wtZbb7vSW9a9GKrmQiAtBPBQb7PNNuFd73pXWG+99XqNH2mlXysdhSnWQkj3hYAQEAJCQAgIASGQ IgJvvfVW2HfffcMBBxwQltuhg+4RQyhESdtwww3DqaeeGp5++umwaNGiKJyRZwhdRGDcb79RKZZG SQmB7kYA48j+++8fgYDxg3GWJ0kZM7RffDGEX/86hC9/OU/olZcQEAJCQAgIASHQrQighPGBUL4m TpwYCJcaPnx4YN3KLrvsEnbYYQdTvPbrVdbwjr311rJuhUz1FgKZI4ChhHGWJ0kZM7Q5ePWNN/KE XXkJASEgBISAEBACQiBGgDUqo0aNMkXrrbDppptGShpryhAK11lnndwt9WoXISAE8kNAa8YMa1sf azGi+YGunISAEBACQkAICAEh4Ah4CCLKFyFSHrbo1/25PL4feSRYaGQeOSkPISAEQEDKmIFw7LEh bLCBOoQQEAJCQAgIASEgBLobgWuuCeHVV7sbA9VeCOSJgJQxQ9s2KbJdjPKEXXkJASHQ7QiI53R7 D1D9hUDxELCd9u3w6WDb7RevbCqREOhUBFqijLFta3yAYQwrv0eMGBF9ktc7FXTVSwgIgdYgwI5J yYW5/B46dGj0SV7Po3QbbWRHuNra/fnz88hNeQgBISAEaiOAcXrs2BD+/Ofaz+oJISAE0kEgd2UM Reyhhx6KtmpF+OHDeRpXmymGD7/zFoqA0oohEgJCoIMR4EDV1157LVog79XE+HPXXXdFhzzmbQiy DdNsXYg2D/K20LcQEALFQGDjjYMdRl2MsqgUQqAbEMhVGeP8DBSxc889N7z++uuR0oWAdN1114WR I0dGH36jsEGtUMq6odFVRyEAAnkrH61EHd7z5JNPhm984xsR76Hu8J6bbropOsenp6fHLMF/Duxo ljdZUURCQAgIgUIgcPPNIUyYEBuKClEgFUIIdAECuYgBKFVrr712JOhsYDtl7LPPPr0nzXPiPIrY yy+/HH34zTXeYVtXLNmcPJ8lmUwWLrggWF5Z5qK0hUAxEGA8Ma74+I5dxShZ+qWAjxCGSHgidd16 6617z/UhNw5THT16dNjYTMH8dgMQyptICAiBbBBohdEjm5p0Xqps3GFiWOS177zaqUZCoJgIZH7O GMINoYdXXHFF2HbbbSNFLMmIsVBzH2UNQlDkHYQnTsE+77zzwsEHHxwOOuigzBBkoSrrNzLW+TIr vxIWAo0gwLi69dZbIw8RB4y6AtJIGu3wLPXizJ577703bLLJJrYOYmy47bbbVlFAOb/nqaeeiq6h lKGw4TGbNm2anT34Rjj00EPD+PHj26G6KqMQKDwCM2bMCHfccYed7bmgZUsSCg9SiwuIHQpxjBBq s4ebMavFBVL2QqALEMhcGUO4QSjayLQdNulAOEIAxPvFPf5+6aWXwhFHHBHBTdiQC1EIQmeddVZm zeC7mcF4Tjgh2OSQWVZKWAgUBgEMG3zwRn//+9+PxmFhCpdyQeAxL774YmTs4eweDD/Ok/B+zZkz J0yaNCniQ5dffnk46qijot/77rtv+NSnPhWGDBmScomUnBDoXgT222+/sPvuu4fnnnsu/PrXv+5o 3tOurcymQltsEW8u9Mor8e92rYvKLQTaBYHMlTGAwBOG8OfC0HbbbReG2+r1N998M1qvMXHixHD9 9ddHmB199NGRMMQfy+EKGZAfZmi6YS/hFTOdUSQEugYBDCGdTChdeLlOPPHEyACEIkaYNNdYs/rs s8+Gww8/PFx88cURDBh/wIT3CG0kZFokBIRAeghg3ODD3N+pHvn00GpdSi56aT1r69pAOXcXArko Ywg3rP+C+D3BVoeimOEd22mnnQIW6tNPP70Xee5lSeYQiGj99ftygenICN6Hh34JgU5AAH6D4uX0 3ve+N+JB8B7Wj2EUIoQRwXDdddftNQDxnkgICIFsEGD8iVZFADmITzJ0nM3MMB5hSOI6JNa0Km76 Swh0AgK5bOCRBAqhB8bizBihB+ULi7R/sraYlbP2mKEuPPhgsqT6LQSEQKci4LspwosIn0Yp43fW ZEthjd9lnYvSFwJCoJ0QQAnDW/joo49GChllZ9387Nmzw5VXXhlmzZoV7X6Lx8psSNH5hIQQioSA EOgMBHJXxooKG96ya64paulULiEgBNJAIOnx8t8Yhtw4lEYe1dJAgEp65Ks9q3tCQAh0PgIYnzFE X3LJJWHq1KmRJwxjEWvp2XCI6CHW97Lbqy2mCGw4xreHEnY+QqqhEMjXI5y1Q6hce0oZW4mKwhTL dQ9dEwJCIE0EOMNn5V5FaSartISAEGgzBDAGEYaIZ57fbBpEqDS/EQY9LHHu3LlRSLU/t3z5iuje m28uip5ts2qruEKgIQSs+5u3ONjxMw291vDDjDt2UGZZQzJUuOGE+vmClLGVwLGBh8LY+9mL9JoQ EAJ1IWAy1iprPthDpQXnTNdVVj0kBIRAdggQhvigrY24+uqro9DETTfdtNdDjzLGfXZ7RWFjl+l5 8+ZFzyEw3nffneHSSy+z0Op4HVlapXTB1078kDyUFqhKpykEfHO9rOdJjtX6xS9+EX784x+Hu+++ O9p4sKmCN/iylLGVgO2yS7B1Iw2ip8eFgBAQAg0gUKqMcXyiRSKJhIAQ6EIEhlnM4XrrrRfVnDWr fDxskdDFnXfeOUyYMCFaL4awiPWeM1nHj59gR2+cbopaukdvuODL2lbLSiQEWo4AUWt5EDsof+EL Xwhf+cpXorON81hDnqxXTtVMZlnM38cfH8KGGxazbCqVEBACnYkAi/GffLIz66ZaCQEhUBkBNi5j R9dDDjkk8nghDG6zzTbRCw8//HAUsoi37Nxzzw1bbbWVhWlt3Os5Y41rFmvG8hJ8K6OiO0Kg9Qjk tYY8WVOzf4hAgF1jFaaoviAEhECeCLCBo+1cLRICQqDLEEh6wKj6+razz2GHHRYdAzR27NgIDc5d RWkjZBFPWZ4k3pQn2sqr2xGQZ6zbe4DqLwSEgBAQAkJACLQUAazxHqZIOCIf/vbr/J0njRkTQk9P njkqLyHQvQhIGevetlfNhYAQEAJCQAgIASGwGgIHHxzCrbeudlkXhIAQyAABKWMZgKokhYAQEAJC QAgIASHQrghop9d2bTmVux0RkDLWjq2mMgsBISAEhIAQEAJCQAgIASHQ9ghIGWv7JlQFhIAQEAJC QAgIASEgBISAEGhHBKSMtWOrqcxCQAgIASEgBISAEBACQkAItD0CUsbavglVASEgBISAEBACQkAI CAEhIATaEQEpY+3YaiqzEBACQkAICAEhIASEgBAQAm2PgJSxtm9CVUAICAEhIASEgBAQAkJACAiB dkSgMMoYp9HzEQkBISAEhIAQEAJCQAgIASEgBLoBgUIoY2uuuWZ00jynzfNbJASEgBDIAwH4zYAB A6JPK3jPO+/kUUvlIQSEgBCojQDil4lhIiEgBHJGYFDO+a2W3cCBA8PDDz8cpk+fHnnGDj/88LDD Djus9pwuCAEhIATSRADeM2fOnPCXv/wlUsaOPvrosOWWW6aZRc20Ro8OYfnyEObNC2H99Ws+rgeE gBDoIgSS0UIrVqzIvOZPPx2MB8bZyFCUOdzKQAj0ItBSz5gzmuHDh4dJkyaFD3zgA2HatGmRdwzG M2TIkN6C6ocQEALpIrDOOut0fWgwCtmHP/zhcMQRR4SpU6eGtdZaK8B7Bg8enC7YFVIbOjRYfiEs WlThAV0WAh2IwIgRI7qe95Q2Kzxn0KA++7h77JcsWdLrvS99J+2/b7klhEMPjVM1sSziTZa9SAgI gYwR6Bv5GWdULvm3337brMLLwxZbbBEJPw899FDYfPPNwztmkiFk6L777gtXXXVV2HnnnaNPuTTS vKYla2miqbSKigDjjM/8+fPD0qVLu1Yogvdsu+22Ee/p6ekJG2ywQS/vefDBB8MNN9wQtt9+++iZ rNvSIiVFQqDjEcAT/fjjj4eXX345vPXWW13Le0obGiXsjjvuCC+++GJklAYbPvAg+PT65jbHc591 KDVhipZtRBttFHvtralMRistsf4WAkIgTQRaJgLAVGbNmhUuvfTSSACCSS9YsCAcd9xxkYCIdRor NV4zvvMgM5KLhEDHI+Djaqi5Zdw73fGVTlQQ3nPPPfeEyZMnR7znscceCy+99FIkBLFuFUIQevPN N6PvxKv6KQSEQBMI+LhavHhx5IFuIqmOeBX+i3ceXjN79uxISXWPGDzptddeC2eccUZ0fZ7FMvM8 9wcPHhLWXjsfCGQoygdn5VIcBIjKyyMsOFnjliljMOVx48ZFjAYr9E9+8pOAp+yRRx6JmBO/x44d G4455piw3XbbJcucyW+ikn7zm2AKYSbJK80V2dkAACAASURBVFEhUBgEGE+Mq2OPPbY3LK8whcuh IPCePffcM5xyyimRAPTTn/40wgHvGIIO9/faa6/woQ99KOy44445lEhZCIHuQIA5nXFFaLCHBHdH zcvXEjmHMEQMYxMnToy+EQL5rLfeepFMdNFFF0VKGGHlEIrb3/52b/jd76Yar9JuG+WR1VUh0BgC GGL/8Ic/RNF4999/f+Ze6NLStUwZ84LAdNY2E8/xxx8frRFDGIKwABFClReR7VNPpbeT0KuvhnDl lXmVXvkIgcYReOONN3K3/jReymzeICzI12i8+93vjnZz9ZBNeA8CUjvS738fbwbSjmVXmbsHgYUL F3Yt7/FWxkOP0HfZZZdFBiAUM5ZoQPCmV02IQEn74he/GK0lw0sGb+IzaNCakbzEb5EQEALpIMB4 48PYzNsz1tI1Y8AHA2Ldxk477RShiXbKtVYQ0ZBp8bZf/jJYiEEIJ5zQipooTyEgBKohAKOF17Ae FS+Z/90q3lOtrI3cs41pzaunnRkbwUzPCoFWIIAHfu+9944+hCqiiPHBIE3oNAIh4ZxXX311xKtY ssH9oUOHmby0q3nS1jOlrBUlV55CoPMQwFN/5JFHRhV74oknctdDWj6UsezAlPg4uXfM/077m5DE lQ643qRNNjNPXHrK2LPPhvDMM/FiWOOpIiEgBAqGALwHhYyPE0JROxORTGkZlNoZB5VdCLQLAvAh lCw2EGJXV2QhrvH3UUcdFW14wuYdI0eOjIxGK1a8YzxrabDAhmCbUmZKiGWSXzKFWIkXEAGPksmz aC1XxvKsrOdle4WstpU0CpptnGbasD/V3DeLa3/3uxBefz2EUaOaS0tvCwEhIARqIYBOSah1m+uT taqp+0KgoxDwcChCEzfddNPIOLTVVltFlnm+WeOLgobRKK/NzBxg29w6YFhmZ0WREBAC2SHQ8jVj 2VWtcsq//W3stUo+gUWZkMK0lqlhncaiJCt1EmX9FgJCICsEWKcKb9PxjFkhrHSFQHYIoJS5V4xv D51mw46k9z67EqyeMmeOzZix+nVdEQJCIF0EutIztu66IWy88epAYllOS3lSLPfq+OqKEBACqyOQ VigQvEtesdXx1RUhIAT6hwCRQpJl+oed3hICjSDQlZ4xXO4nntgITI09S2gi2+QT+igSAkJACFRD YJNNQpg7t9oT9d9Ly5hUf456UggIASEgBISAEGgGga5UxtisI7Fmvxn8yr6Lpds2Y5GVuiw6uigE hEASgcMOC2HatOQV/RYCQkAICAEhIAS6BYGuVMayblys03jFbIMkkRAQAkKgKgLLl8twUxUg3RQC QkAICAEh0MEISBnLqHHxvqW1M2NGRVSyQkAItAABeENWpDUeWSGrdIWAEBACQkAIZIOAlLEMcMUj xgYhH/5werszZlBMJSkEhECOCLz4YuwB23DDbDJFEWP3M4U8ZoOvUhUCQkAICAEhkAUCUsYSqBJe mMYBh1i+OVR6660VqpiAVz+FQFcjsGhRvFtrVhv7wHc22yyE557raphVeSEgBFJCQEstUgJSyQiB GghIGUsA9NJL8Tk9iUv9+gkD22abWCHLMiSpX4XTS0JACLQEAQw0WVNa2+RnXU6lLwSEQPERYKdX 1rS+8krxy6oSCoF2RqArzxmr1GALFoTAp1ni4Gi2zidsSJalZtHU+0KgsxEQj+js9lXthEC7IsAB 8hiUFy9u1xqo3EKgPRDIwVbbHkBQyu22C4EDodMgLNTyiqWBpNIQAp2NwLBhMa/AiNMMEWIN3xEJ ASHQ/gisMAFirbXWCiNGjIi+W1mjPLz6rayf8hYCrUZAyliiBU46KQQOhE6L0lqDllZ5lI4QEALF Q4DNfggFevnl5sr2/PPxmjF52prDUW8LgSIgMGjQoPCPf/wj/PGPfww9PT2Bv0VCQAh0JgJSxhLt mqY3C0sSa9CuuCKRgX4KASEgBCoggPGmGZo+PYQJE3SkRjMY6l0hUAQE1jBm8MYbb4SHHnooDB06 NEyZMiXMnz8/cN0p8dMv6VsICIE2RUCmlowaDmVs4cIQXnghowyUrBAQAkIggQCGc51tmABEP4VA GyKAwjXMYpfxhB133HFhQzsL45FHHglvvvlm9JsqEcK4fLntFBZkT2/DJlaRC4rAOyvDShhfeVOu I9ljoIcPHx7FQHuFYT5c45O0/OQNBvinsbU95V6yJATCHjffPO9aKD8hIATKITDY9pQvXX9RFN5T rry6JgSEQHchAD9atmxZuPHGG8Njjz0WhtgOGrfeeqstn9go+oDG66+/Hu6885ZwwQUXhqVLTdAQ CQEh0DQCi22Xmh/+8Ifh29/+drj99ttzX6eZq2cMS8+jjz4annrqKdssY7uw5ZZbmnVnecR8qDyM 6IADDmiZQsb5P5deGsLHPhbCOus017asAXnXu4I1anPp6G0hIASaR2DgwIFRyM8zzzxj4/JdYaut top4zxKzmsyYMSNw/8ADD2w+I6UgBISAEGgSASz08KRZs2aF2bNnRx6yARZuw3UMSvvtd1A47bSN w+DBuYpwTdZKrwuB4iJAOPDnPve5qIAoZRhF8qTcPGMoWrjZYSzsEHTTTTeFV1991TxRa0ZCEvHR 8+bNC1OnTjUGY1pRC2jUqBD23DMOL2w2e6uuWa20o2KzOOr97BBgTHYDUU/4y5w5cyLvO7yH9Rfw HsJ/3rLFoq+99lrEe+BNULdg0w3trzoWDwGNr/Jt4tFD73vf+8IWW2wRLr/8clt7/lL0jeEI3PgM HDjI+JcUsfIo6qoQ6B8CyAR8MITkTbmMZpiHx0C///3vj9zt55xzTiQgjRw5Muy2226B77lz50ZM BwsQBGNKhjJmDY61Qdhll/TOBqMa7JD2pz+FMHFi1qVX+kKgPgR8THl8dH1vtedT8B7Cn/HKH3vs sWH99dcPDz/8cGQYWtfOsdh9990j3vP000+Hq6++OjjvedsWX2EZgym3gjG3J9oqtRCojgCRMB4N U/3J7r0LfyYUke9/+7d/s3Wgb0e/4WHOu/m2/3Mh1qFa1iIh0DUI+DjLs8KZDzGEISzPWKM3twVU Y8eOjeIxEYpGjx7dy2RgPtOmTQuHHXZY9Dza6W233WZrr5aEQw45JBx88MG54II3y4qcCpHOokUh PP54KskpESGQCgKMq1tuuSWa8N3amkrCBUsE3oNCBV8ZM2ZM2HXXXaOQxE022SRsbPvJw3BRtPCK Ear4nve8J+I9eMec90yYMEHhiwVrVxWnfRFg/RNLEhYsWBApGYxRUXkEHBuUMCgvAbH0aIxDDw3G H0M48cTy5dRVISAEmkcgc2WMIsJEUMhgLn//+9/Dgw8+uEoMNALTDTfcELbffvuw0047RQIUz48f Pz6cddZZbW2ZxjvWoqjL5nuHUuhIBBhX++23X+SJPu+883Kb5FsBJjwHYQbjzsyZM6OwRHYo8/UX S836cu2110be+a233rrXao8B6POf/3wriqw8hUDHInCoSfZ8WLvZ6bwnjUbMSwGjrBzFQ3SWbd64 CrEJmdnvREJACGSIQObKGMwESzPhiawZ++Y3vxk22GCDKBzxyCOPjNaNsX7j3nvvjaxlPLP//vtH VUaI8jUcGWKQadKEEqxchpJpPu2aOOew7bBDsHCxdq1B+5XbQ+/afWzVQh7egxJ2zDHHRF7ASy65 JApTvPLKK8MRRxwRrRt75ZVXorVkKGWLzI2NkgqhxLllulY+adw325OVNY2UtE41HRSVShYI+Jjy cOAs8lCa/UPARK8oKsg2cFyF0uJNKHt33hksXHyV5PWHEBAChkDmyhgoIxR5DPRXvvKVVWKgWSsG g95nn31612jgFfP3oh9t/A+Wpp6eYJ7B9IStNoZjtaJb1Eq4++74PLZx41a3yq32gi6khkCeVtfU Ct1gQs57eO2rX/1q5PlirRw8Z5Tt2MOurgcddFDEe7jG+oxWENbnZ58Ntp62+dyJajLHQ2ThLhWs mk9dKQiB5hHoBt7TPEr5prByqX5mmdoeSpEslFkGSlgItDEC8U4ZOVUAYYcP1mqs8vzGQubX2UXR 46NzKlKm2eAVY4v83/422LqUTLNq28QRFm1/hUgQZX2dSAhkhQAbB0BJqzxCIQpY8lpW+VdLl3UZ 06dXe6L+e3jif//7ePOg+t/Sk0JACAiB7BCwncPDH/4QbOO27PJQykKgXRHIVRkDJIQf/yRB82t8 dwq5Vwxje9ZWp3bFDFxefDFm0rLit2srtke5K/EYv97KWsAj0gpTpB6sUxXPaWWLKm8hIASSCMCP /vGPYFEIyav6LQSEAAjkEqbYrVAjEF12WbwoVoJR+V5gzlHzTITw2GPBDrMMtqlEsHU9WmdXHi1d bWcEULZWRmBnVg12QmNMrdyALbN8lLAQEAJCoFEEMFBrDX2jqOn5bkAgd89YN4CarCPMB+GoFcQZ Z4QFFJnWXjuEG28MduB37CH73e+CbepS5BKrbEKgfwiwjsvOcc2MiMK0JXBRyK8d4xgICxLFCGDk ue46oSEEhECrECDoiTWxRMKIhIAQWBWBrlTG8FjlFQ3ZKkWMZmYNFmEBRSVixy+/PBYe2WmJtXXs 6IRCVjRCsbXTF0RCoN8IcFYPa8OyInga3mXG/SOPyDuWxBmPJEYfvPAiISAE6keg9Nyx+t9c9UnG 3uGHh3Dzzate119CQAjYsoJuA2Hhwjh0sFNd5UmrE6GRKJ5FJTvPOxIcvS0IrSqqAslE8r3vhXDp pfLcFbU/Fb1ceYUp+rjPy+BUdNwpH+tRr7pq1TBRjD8YWURCQAhURgAPO7wkjbVeKHZaslEZa93p XgS6ThlbvDgW+CuF8GBBbXa9BcpFqxjOj34Uwk9/2h4dGuZ+2ml929njRXRBsmg1QJBm6/GHH477 T9HKp/IIARCQAla+HyAE7rhjCF/7WrBjVuJnCBvFIFQkeuKJ4pWpSPioLPkjMHp0sCNB4kOhm80d /tTKaKFmy6/3hUBWCHSdMoYCcOqpIay7bnlIN964eabz9NPxhNoKpoNwQYhSuxBMvpUCpJ31a4eN x6ET1azkKIk8d/31sZW9XfBVObsDAYxM8BuMBoynVo6pIiIOnznyyDiMc+rUEMDrmmtCGDasWKW9 4ooQ7BxykRAoHAKtkGcKB4IKJAQyQqDrlDFwZGKuRO9+dwh//nOlu/VdZwdFwgVb4R1jwxD3+sE8 ixymCJpJoZFQojzX85E/gs93vhPClCkhoJhVIrBkPZvW4lRCSNdbicALL8S7tqJcwN/4SHjqaxEU sOOPD+Hss0N49NEQnnsu9nTDL7Mm2gYlqx6CBzYbmVFPPnqmWAhw9ipnHQ60DslvjtvwM1n59nNZ i1XqxkuT1vqzxnPWG0Kg2Ah0pTKWVABKmwchplklqpU7KCKAUT8UQsJxsP6yTq6oBHN2JYj1WA88 kO55S7XqjfBKaOf/+3/x4dPVnqdf5K0sViuP7gkBRyDJszbZJISTTkpnjYen3+7feL05MgPaZpsQ CAeET1ebC+Knm/8XL1w1r3syB3Z9ZFMjUfcggAL2qFkIzj///HDhhReGpy20ZpBp5BxS/3s7vf1X v/qVbR51Q6SgtTMq8Ch4E3M+uyeLhIAQ6EOg65SxeoTpZi3Kzb7f1zyN/4Lh4e35z/+M38WT48pO 46ml/wZl++Mf43RRfDfcMIQPfjD++8474x0V8zz8mf5AaBfWaN9IpFKtCXGVZa8SOrpeC4GkwlTr 2Wbu05//+Z9DwBskihFgfPtOioccEsJFF8XHAOQxnsmbcxTrOWMOxY21bKLuQ+Aks6C820JzptrA xRO2zCacnXbaydZVnxYpaC9auA3es9hTNjgMH95eGLFj8rveFXvt2ahLJASKigDjD+90ntRVyhjn V7FtOgJ42oSSUe4cG/f85K2gEapIntQ177yrYYsChtJFKCjKDxPKzjtXeyPbe/QHJgbGHaFLlYh2 5IwoFMWcx2ilIul6GyFw9dWxkaSSQpamUkA47Trr1O+NaSMYUykqY5gw8v33r09BajZT+NyVV/Zt HFItPXg1ypuoOxBAsXrHBv+7TEsZbTtlvGHnvaxvLly8YkNtEt/ZJkeeQQkbYh2X34tNY58zZ7Yp bX81A8NbbQMUc/6ECfGYq8QH26YyKmjHIfCWWcumTZsWGUMeMS8G3uk8qauUMYTuhx7KZrLz9UTJ xkPxYKOQD30of+8UkzpCQFpMD2WTzSuaJc76IYTyr3+Ny4cQCnbQe98bf+f57+zZscWckE6s5ZXC ifAunnxysAlT3rE826dT8rrnnjgUtpIhiPPBUPLT2N0P4wZjnzA80eoIwJP//d9jnowXMQ+qxyiG Vwy+vfbaeZRIebQaAdaG3X333WHy5MmRQvaExc4+//zz4bjjjov+RgGDbrrppnDEEUeEDTbYILqO 8rZkyWJbfrAwd+t9M5jRt2XIbAZBvZslAoyr+fPnh1fNa7PEJmIMH3lSVylj8LasPBsu+BALTT4o GUz0p5wSh8OgmOVBLuxRBnZ1ZL2Yl62Z/FGYUFyaJQ6hZr2G4+HM+YtfDOHgg5tNvfL75PPaa6vf RzAjVBLi/h/+EP8u9y9hTgjLOY/RckXRtTZDgPVKn/pUZUMQfZAxUckY0Eh1MWqQHjyom+nJJysL f4cdFsJee8W8KA+M4D8rZeuK2eGt22672OCTRj+omJFuFAIBLPF77LGHGflOtiNTHrYjaX5qkSLD I4Vsri0eRCD8kS1o7unpsbnptehvQqdGmOVm9933CSeccJTJGGZ1yYGY+5p1FEgZy6GhlEW/ERhs wvM//dM/2Xrrk8K4ceMsrDxfr7OJ7O1PRZi4mGiZTPH8ECKEIIQSxGJxFBlXkrJEm3zYBIPQPzam wJNFvsRq/+lPcc6se6KcjRJKrO/SWPouXiOUPsJAXbnyZ1gfltxAxHFwwQSczOAXvvnNvjUd/m6a 3/fdF8J//MfqeXCUAbusQSyeB59y5OVkfVuR1uCVK6uuFQ8BeAEGB3hDNfJxUe2Zeu51qiJGdMPj j9eDQAgXXBAs7KTyswcdFMKtt1a+n+YdBFH4LmHRlYhnfDdM8ZhKKHXWdbxjhCNCB1mHJExxkXVy 1ouhjG277bZhzJgx4QXbktN3WMSCv3Tpkt7z8vJABONOEeSsPOqqPISAPGMlfQAFAAWjVnjcf/93 COedV/JyE38yKfaHELjwjLEbFmFCEIoGyghrRrImQu123z2Eu+6KvVh8c6gyGLKRB8Q2yyhsjRKL yksFBM7dQtghvIYQPtrh/vvjlAlrZAMBvGmeN3dcGSvNHyErSwES/ClfUjGkDCiPnu+111aecHjO 17f5RgCldaj37+QmJvW+o+faFwH6NuT9LP5r9X9RxOB5osoI+Fl/GH5++9vKz4E5fPwvf4kNLOV4 OoZPoheyJvjFMceE8C//EvNmP3S6XL7eR8qVt9zzutbeCKBgoXjtuuuukVX+eLMMbr/99mGMKWDr WtgGfx977LHRx7e8b0WN0zjyx8udhpfN09K3EOgUBGz6LyYhmLChApMv67yqEcpArWd4v9RrUy5N JkGUjkatQKSNIIVnBYEfCyf0gQ/EawD+9rf470b/xZpK+BIhdJW8Np4mz+27bwgW1RB5qSzyISqT 7Y7ba0Wjfo1Y38kT5QEFE0WTEENXLJ96KoSvfS1Om93CyPc3v4lLgwLIeT4IHijT06eHwPOUpRzV 0zbl3qv3GnUmzIL6J4m/6T/cJ5TMhaHkM/6be2mEKYLN3//uqVb+Bnu8mqJ0EPCF8OViwctdSyfX 2COCoWbUqOopmlE8lVDg6rmkfxeekPX49VLD5+FzfKptuAPfNKdC2GqreIMexne1se3pZ/ENNiNH xmVmPR+h2tWI50v5VLXnda+9EYD3LDWh43WbLPmgnBEihQfMr+Exy3t3tySqafVJ0sFA3ah8lSxL p/6GZ+UcGdepULZlvWyKyo9gOmwZycLU0kMMuTfMNBgXivAsXXJJLMi4YuMlRSmwNa29hKBTalFO CrIoEzffXDnMrjch+8GkzaC46qrk1dq/8fhwpte998brxAh/c2JiLS2f36v17QdIn3NObcGcTQBQ JN0rR5nABqUIQc+JayiMvsW8Xy/3jScN5YtIivXWC3bmSaxYYZmmfW6/PRZ2uE+6fCC+yd/xfPDB WEFMrjujnGBTSjDstInykJdj4+mDFwqzGSOjb/4uR+XKWe65eq6RFmvVahHYg7GoeQTgOQgzCDfw GF8cT8r8Jl48K/IxUSt92ruSsaLWu628/8tfxjwh6zKwnpPzAG2NdWRYqebVgu+gsMFLMOgx5vBs t4IoJ94ANg0xJ0eYMaN6KShzmvymem66KwRqI5BWn2QcpOllq13y9nni17+Wkto+rZV+SXNVxrD0 XGuxYJMnT7a1VTeuYulBILrMNI8FNnPGgtIK+14WTUpMrHgkWI+FYoWXCGWMgV1KKGEoGjzngizv 8jwTHDIXz9SiRpUnvC54h/AgsfaIMqdBpIuQhsepWpkQPGbOjC0rPpFTBixQKEzJ9V7cR+moxztD HXiXHb5QyvB0YeGfMiVWWhFwvK6e7xVXxF40roM3YZEIUChCXgfuPfvsqqGP1IG8aq2rqQfXpDJO KKWHJ5JnkuhDY8cGWxQd97Fy1nMwBC+vX/L90t/ki/BXjcCy3GHcKMf0WycwanbRtKfVzd8oX1ib rzHQr7ZO/AeT6rE8c92NPz/4wQ+sjyxcyXvSRauefuM5lhoL/HqtbwT+evharXQavY/nFp7g4cm8 z7oo9+jCu6qFE5bLD+twMrTZn2HssgYXjP7v/42NO36v9JtnwANFmI2M+K7lmSxNo9G/bSO8sso0 a9zYRn/8+Biram3swirGQ5EQ6EQE0lLsOg0bZCWiZpKOhk6ro+pTGQET9/IhF4i2s+2i/tlOJH3G FiHNNa0FxYtY6J6ennDxxRebgvX2SgEJD9oWUbgfAj87Y+FVcSGWbxd6GdxOeGxOPLFv0uNvFACe nzUrXuPEoZ+ViLTwxKFQlVP2qr3nikalZ/pzHSGCdGtZ18GCdQkoqgjxEEIgg5v1Xi7UUz8GPWny 7YRiVq6+5Av2pPHAA/Hiea6RNvnwjfLkf6NMnH12nD55kofXwfPim+t4/RDayBdFjHRMTw/Tp8ft x3P9JYRA927edlssICLkcd5PkigHyjr3NttsVUz8ORRs+pHj6tfLfeOBpP/hveVzww2rCo3kQ9kI t3IvnG9yQlipC9SeH+lxPksWxM5droxkkX5R0oTHYAg68MADw2c+85lo69qXrONRdzz0s42x3HLL LdEzlBkPGmf6OBHGiqGlP4SXnX6eHGuV0mHn1Y02qnS3/HXWRvn43HrrvmfKGRX67qb3C2zYARAD A/2dsYzRzPOnj1cLJyxXEvjM5z/fZ0DhGcYDY9ePAMDb72OlXBpgAh7wlVq8s9z7/bkGf+CsScZ4 kuA/KGL1EPyZMK6kUaae99rtmXWM2XcD72mndnEDRtZlpo8jL4j6EEBuI6rKNs8M8AtRHwLIkeVk 074nOuNXbsoYAhFhiLvsskskAMGIkwLPAzYDv7f3oKnlNlhH22R7gu12dYdZG98K554bT86uVPCN xwKvB4KOD26uo7QxITJx41GikyPoI1Rz4DBrCSoRabHzYLnNHiq9U+s6zCch29V6fJX71JE1V+Xe 5x5KIwI/dXWhg/wgF/b57cIRFnTWePABK4QVFIP3vS/2XvFsklBMv//9EH7yk1j4YZMLysIHzFFk TLeOPE8II3xQAM8/P1YMEU4Q2Ai/Sp6f4wwZgWrixPge5bF1zJHSTLmaITxsCGQIw9Qd6ziEIgQh 7HAdQZF6IOx95CPxttLxE33/0pd4jrrVIvJD6e/piT2JWMV5F08ihPKJ55CQT++zKMK0Fe3HfQRs mDLhXwigbMSSJj1pwPzZNLwpVij3EKWZfpHSQrFyj9dWtoCIM0QGGtBrr+yM1H/OnDnRAnkXDv38 n8uNYVx77ezIg1vtyINq9aV/19t3NtmkPqUtmR/9mU0q4HHsDugEP2AMJXmA30vzmz4ML2A847li I6VkSDheeTdM1JMvfZ93vvzlVY+Z4LqdixuNZ5puhx3i8Uva5QiBBjzA38dZuefSvAYvZtdWypok eG6pgpa8X/obwQNeWA8RddBOitvfbPE04+oSC1vBW+1jrp666pk+BOjX1TysfU/W/4udRZM8pP43 G3vS5ZPG3ursp4ncgf8z3yOXoJyJYgSQzVjP3+lUh3jZHAQwWxanXmD7DN9jJ59iieYQw8PsoJeN bWEVf99rksRDphGwSHWuzWhxmCKdcrl5v+ZZON070WSGMOwTqwv9JkdFExdCB0oAkxjrcRCemKiZ qJiwXHmoZf3hfdY3MaF6Xs0hEL+NlwYBvVGiHHhGEKxKlQEs7ljswQAh3ok6EpJjZ0f2nqHFNRRX MPrhD2MFC4ENRYmy4X0EI/JKTu6850qep48SiKeR5xEcUDTAn2fBjLKiwN1xR6yYIIhwyDOKGWmR Lx/qw/tjxsRCKF4BGBFpINg0Q4RFUgYUGhQfp5//PIT/9b/i8lNmQlkpy957x32n3ERR6t2g3DAI 8IRgpGeeGQtcKP8wUpRY6gquWPFReCHKggCNEuv9CxzBjvcwGHz3u/G23IQ9ocyhSBJPTp3SoDet E+AZesUaGo9RpxK8B4HvSpvh4C/U9S+muXzAFgmOsgHCltJ3WCdFQHzcgObQVXgPCtzaaw+P+NNN Nw2P2hrlvj/Ee7RvPYQhiLHDmKyX6DdsCIFwlrQeshU1Z2nRn7IkFC/WgNDXMdjYGbbRuih2UoUY J9SnXmWEsQYPPvTQmAckeRFjh7MI8RyBK2OVepcjFCC/5+Os3HNpXjPnajj99Hi8p5lutbQITZ88 udoTle8xf7CpUmnoduU3mr/DGVnM1P8CzwAAIABJREFU+xxgzPhkrIkaQ4BxjtKU9rEMGC8JA86S aG54Ft/18oQsy1OUtF0Wgn/A35Jr/ItSxlaUA/5P5JCded7xZGJltgSzReHiIDW8Yv9tLicEHwRC DjJ8zszGMOh99tnHhNQXojM2nEkPGTI4nHrq+02wHRx5wZjwEViYaJlgmZARdvlm0p80KRaMGewo VAg23PfJ2L+r1RgmgfBEXv0lhA8EfSererQGgnNv6iUECZRJFAViiBHgYcIunFBfhBYGMYIXSgXv kC8WFjalwJJM/SEwg9lyn/fAAiwRfghBRCZHgUCISlp2seqDY5JQ6FAukkImjJUykibpQwiCSQsP SiPlsEixqC7gRPmdPvzhOFSQPFGga1FSAS19Fu8TbUm9SM8JDFHS8EbRb8CBnc5YD4cSX1pX3qM/ JfsOv6nj5z4XW7L4m7pSF28TFCmugylpoxTisf2f/zP2GlJ2rzvfKLh4HQk3/cUvgh38Gf+m/VAg zzgjrovXo5lvxuFHzA14isXFsXFFpwpE1Iv6nWHg7W5nPnzjG9+wMfBkpHzNs8H1D9NitrZYtg99 6EPWboOiZ8GVUOkdd9wxMhgdcMCYaMMFHycox40QXlLGS7L/VHqfcUz/8zFe6bnkdcYT/Yt3vD/5 fSZ1+EQjxBhuRIGDRzFuLAI0Gv9bbBHC+98feo0pjAfqXlq2SmXiOcYtdNRRfZsMcZ2xyweMGNc8 xxguJccbbA4/PN4ww9MsfTbNvykju9n2N8yIujRazjFjYmWKdqiH4P9EWsAT6ZvwSYw/rrjWk0Yz z2xj0j6G2CNMusIDLWocAfo+IbjM52kS81zW/YCxO3p0PIbhqaIYAdoU789ZZ8U8IClbdTNG8Kdy c1snYmLTR/aEcoXCxfdmtjCHcCGUsOU2MvGGjbUdFDj5+l/sIJb45GvTKgJryQZEu/exLTyCKgvF +aZxmLT4jVKAFwyhFwEbpQBFCi8L3gR2/8OiWq8wUC8aTH5+kLK/w4BiQkVwZv2Wk8m+kRJSj0Dm 7yAUEdpHeCVE+fGMsDietUUoK+RFXZlYmWRhpihh/IbpgRe/IRQfBH0+lBMhiTqQDkoiYYtnnx17 ycDSCeupb37h17weKBAIkBDlpWyk6XlynRBEdzGDF/XA+oNygqDoafEsRNkQuCq1VxJ3hND/+q++ 7fTjFOJ/KQ8Ewy+n2LErG22E4FYprziFWLBEyfSygh3Y0t8IDyNsCsGXskHgR99EicLCRTthHCBP PIq0DXV0Il2e4xnS5gNRbq8HadQqZ/xW/f8SvtepilgSBZQrwhGPMul+X5OWCZcmVBEj0ZZbbhkZ gj772c+GnW3fcZ4dMmSNcNFFy6LxhsBKW8NX8FDSrk54byspLhg0enri9mac0Ob1UqPtjMLOO4yd JNHHvC8lr1f7TbkxBFQj8nGllPQZ7whY//t/h3DkkTHv5TqGGPj0qaf2heliNAKPSsRYcIUkqUzi hf74x+NwaucvPEvYOQIk4+dLX4pxhk+CB7wT3mMBGVVD0yuVpdZ1eIfj4M9SFsY/Y7mR40yoM3NZ PUZAeDK8Bt5AHRHM8bQ7sVtjJcMfcyfzIh58yoliBnb08TwJY2w38J6sMKWftaPA7mMbXHw+zQqj dkoXfkl7Irdi0IHfNWpIa6a+LHWBrxPy7nJMaXrIgTZNRvJ26b2s/qaPJOeErPIpQro2ZeVDhAhh CcMKTZjQcRZDx6GGbOix2DSF+TaDbr755tEzK1ZQrJdtQr0umnCwbkJMGnhXEICYVFBKELYRiunM Hp5I6AUdiut8fJc6BOq0iLIQHkSYjk/+MBoUogMOiCdIz8snykaYDxMlgxHhHaLs/CYt6k+9ETi4 7kI7eaP4UR6MjnjIUJbAhYGEMoBAg2JG+rzn3iWY+ze/GefJBI+giZWmdJJ+z3uChZnE1lhwxZuV JAQFVyC4vttusXeP34RU+kBH4MPjV9omeAIJr6Q85QjcEXScCH1EIKPOCJ8uIKGEQ+BQTrjlWTYa SIYLxm+s+i9rty66KMYPIRBhCSw/+MH4OYQ9lEyU3P/zf+JnqSPXWOsFxq5Qo1AhOJMGm4W48Ey/ oN4wY/AoJ5CVq8OqJdVflRBA6IP37G9b2o23nRQOsAGKcWjTTTc1RWKp8ZU3zDs60pi+NYQR+KN4 Mf58fR9jizZFwfDxzHdywqTvo7RhRKGP0r9N14uUdb6zIPoFYxXew5hulhDO6cuErlVSNKkXOyQ6 30NpwrtMCCHhhRi/6OsoBIxzvGWMCcY0a6psn6ZeXlOtvDwP7hDh05wZRtpshmFNF40rFB7wZjdH xhYh17yX5LWESGexFgalkrxdwGQ8jxkTz0XwH9bNwo/KjeeoUol/UKBQWlm7W4n38Tj8+Otfj/GF H5E3fMPrC29H4aX/liNCyr/1rVhp/ehHQ+Q5JES7VKks966uFQcB+hRzN8JzHuRzVX/z8jHp4zk5 tvubZie9xzpZ5EaI9bDsFusyTHw123/hr+yTwBFKlQyHzAsY6yrxlixK6Hwti7SLlqZN5fkRQlHy EEMUNCzWEIIQ6zviNSxr2JU37feDkceBrcchBA8mHiYgBCEmfLcocA0GhcBPkghGEIIC1xCaUBJq CbWedq1OQDoI0CiETLj8zURIufhulvD2oVQS2gZRTyyn1MUt3mBBGag35YVhkj+eOUIUUWrYoQ2F BWGJiRwPGISS4tjFV+J/SQOFl3cRJlyQAEd2oSSmHKEHQYBnLJorWpuSTIPfKCmsJXFPHNcow/HH x2VFQezp6Uuf+xDMmk08qGM5QuB0BY72JCTIPRbUh81E2EQApQ2PFe2+sov1euiS6VZrZ9Z6sb6M PkF7kB94UHdvF9r6O9+JlePJk2Oh8+ij43YiH4RED8fgfTBAkPzYx/o8iKTJDnL0ITwvTLKUC5zx LNKW4EGbifqHALwHo88im034hs/gBXPit1vqmYyYEBkrGDcYc7QH7UR/pm9BtEdyB0zGDeuGXEDi Pm3N2LEo7EyIvsn6UBR++laSGMuNEnWkTzOmkh4s6kY4MwYhjBjgAE7gUtovKROKGmlh/HEDBNvV Y4SAn5NeOcK4hcEHYvySNnyIzXW8fihk5P3pT8feONqIfNj0A+MPYeGMGyfScB7g19L4Zv7BywTB m5kHKBt5kSeKFVg5v+K5Sm0Cf4Ef8j7WcernhjLecyIf6kjfhBciHMFnwQ3CWICxbMyY8vMQRkz6 CtEJ8BV2rfzkJ2OFOUpA/7QFAow75nP4Tx7kcld/xxFGGfgBfRvCONLfcN44hfr+Remjz0PJ3/GV 4vzLePb1evDL//zP1flqVqVFRoLfEPYKj3aFuTQ/+Bg8Jw2jX2na+tvkv+KCMMAm+iG9wi/lpJMg sGJp9XA8OgjCAwIAEx0TDJOxE5M0zzOxYenl/WqEcoPCgMBdjVwAIX8YI4TAwETZKMPCRYx1GyGP OjCpw2SZaJnwIfJgkkXJREhiAGGVxWvDb+rFu3jC8NBQZ5gfmCH8oKh4mUkPBQEGmQy74jpC1s9+ 1qe0ISRAvI+H0gUNBi9KE2Wy6K6IsLSiZEDgstNOMQOkfRAYGcQITginKIkQymMplXrj/D54UF7S hhx3cCAkkLUPLGrmOZ7BSo4iihI0blwIp50Wv1fvv1iYE/J6lB84gx14QFj5sWo5IejQB5wQjvCO QXwjaCKQgqO3LRawE06IJ1cUQPCiHxPKaY7kMGlS3CfoI6LsEaBvswZq+vQQJkyIQ0ZQsBF4UdJ8 rQZji9BcV84YOygOeDkIjaO93IrYKE+ot5YIGPArJvBSQpmBL9Kf6iXnGXh1ERA+9al4jOIFJySX Pkk9CUvEmuqKUzJ9xgj1xuDCYeo+VjBg8DdYWlR6LzbJd/GgeVizG9KIbmABN+lCjEk+KC4Q/IcD leGb8ByMUfAliLozttw7HV9N51/qzwbAePtQDMkfHofyDu5soEIfwMvoZS/XJs7n4ZG0J/2K90v7 DHVBgIXPofTDv/EWoqS6wNnTE3sn4auk60SZeB+hmvZwjGkj5gWiKETthQB9yufCtEpeyVhA/6hk IKgnb/pYci5F8YC/ZE2MC/fww7cIzy0KMW8QZQAx5hn7EHIByiptUcoD4ifS/ZdIH/gIcxveuUp5 wnvg95Sz0jPplqy7Uls5vRWv0gjaNLoLoEweWBlRUrA8E1oBM+IaW9XDlFCgmKB84qNWpOFCO5MQ TKUSw+F5BgXCdJJxcL2UKJenTd4MeAQBNmgoVTDKTaykh+DBhI4AjvCCMtfTEwvf1AUBizwgFDCs 0tSFCZWJFhzwyvA7WWeeJy0XSKgvShVryxC2UNhQ6mCG5F1KpI9QweTtFmzKcvLJcdgVa7W4R9nA id8IO4QPcbgpRHtxHeFjwoTYEvs//kfcnuDBB8K7Vkq0Ee1QSpQZgdgFT8rpRCgSa0Zg+tSRb5RF 2hxhBaUGBZXfe+0Vwk9/GqdTrS94vyEP3uNZGCXbz6JkISwS3pNMAyEVoQyqJACCC2WkrVFeCbN0 ok6svcFijeJKGUiTPFAORfkgQN+mD2IYQIkfMyZW0Ggvxh3jk75Fe3k/oU/DCxiL9A8mLHiB9/Us Sk7alBPeU0r0TwQoF9T9PtZP+mApwdPol4RUwm/ggwgwEEYqJmO8KPRrxhLpukIUPxX/C98hX8K4 ndiMw/ZPiXgB1+AV//qvsYGCv+nbCAXUJcl7GXelRhS8jfCiJPEMigVEGSkvBK9gbSj1Sotc+QYv FD94/3779Sk4hDCDEXVBeIFfOK8q1ybuzfriF/vahfLCrwmTdcKYg8cP/k2/ZD5gjZ4rgZSH+RBs IfgKZaOt8eB9+9sxtih9omIhwAZChFKzjpXfTnjruZb1RkuMZfoc/TMLQtZJ9jvnr1nklUyTsFwM 8RhxL7wwNlw7T0s+14rfGLamTy+fM3y1GeW3fKrlryIr8WHjpT33rKxoISvihaftynnty6euq/Ui YGJDMQmBBg+Eh4Fg3YRhMKgJ/aKjMtmhUGDtQIBnMmJS5zoET0OQ9ckdIQFPWS2vVyXPTJxq/C/5 UD7KCROjbFjTSxUxLwfKSalQxqRO2AmCA2VmnQnvcw1iYiVN3kXhwsMzYUJ8rhhKAYIfeSMYUddK gh/32HIaSy0KCh6scsSAhBmTDwTzRBgiD8L1CDGgvqzTQNB0XKkHwhGDGexIg50GyY81ZQhdXEOg RZhA0UOAOPbYPuUtynDlPwi8rkgmr2MhRynx8Cn32iWfoawIPjxHuegXeEoR1MAMryHCNEozRDlK 2yW+09ePEO4mTYrxJW8YPETdStcCofShdGIsIO6b0E63PvMObQROlAXvgHvNuAc2MEOs/FjaESQJ 9wIP2jCp9PG8KFsEGJMIsvAQ+ixCPcYF2hiPmG+5S/9h/NPHUYoYj4wThGzajXEKv8qC6BOMS8Za JaIsSUKIp7yl5HyR8cM4pn8T9ov1ln6P1xlB/ytfCZEhAT5BPy4l+Ah9Fy+YE79RSsAR4hnSR+FA CSMtMHLFNn4q9szZRpirEO0C1vUQikslbOAN9Qg8tC98Au87UQNnnx0rOfQFPiiarK91jzh9gPEP 0Rcoa6klOdkmzGG8A5/3fsJ9FDG8kfBZ2pn+hFcdfkIIJN5+8AczBCSULcpJXvQ5+iftiHeTZ+Ev lXh/XFr92woE2EyIXV5/YdvocgTQXBNk/HgfFDHOQZxq2xzzOyuin9CPyo3nNPJMhh+nkV69aTAe MOCzDIAxhBzlfK7eNLJ6DuWGcevUqvkdmRoZFO8YfAcZqhzR/ShvKY8u92yz18jHI76aTatd3i+Z potXbG94JkR+Y2lkgkOoxZuE4EDnYVJnoDGZuXDNpIWSwN9YGrCI1NPhUQRqPeflIm/SZwLE41I6 6YIoVlK8NlgT8OA40fGZNL28MELS4zodkdAS9/rxDpM67n2uu+WXtLFWsCU9Anw5In2EQoQa8oMZ IRSV8naETgR/FATqh9KAIsOifAQnBFPScisvz3ONtAmrQzFBgfOF6GCPxZj1MliLEcDYKYhvcHLh pbTMjkfpdfKl3j/+cbyIHeUMIj3y5UMbJ0MZaUcUSvJHMcLjBGYIo+BNuKtjGafW968rpayLoy4I dgilhKnRRvQTmD3vUwYIwRKFFyEWzFgQizDksfK8Rx+mXD090SvRP5SdkCcUPxQwiPYBY/o0eNHn RfkhgFHE9heK2hih+/DD47wZk0xg3Kdd4T1YXblOn0Dhx5BC/6Ev0971Cjk877ylXE3x/Pt6WL9f i1f5c/7NOKIflhLXEPwZ74wP0kWpwHhBP8cLAx+ljvRd+AhjqxzxTKnXm3Bpn+hJB68SigzRARhO MHA5b/E0GRdZEeMLvJMCUbm8OGoCrx514h0MOfAZBFjGJO2LksQ3xLwDVhBKKes/4JGViDmBiAIw 9rYnPd6FX9OPwAieDe+CwBJjFoRSyVyI0gy/oIykxfsnnhiHPFEe8uC+qHgIsHaejc0Otl1wppi1 z7f9R1H7jVmbHzBtwj1mrK8fOnRY75yTRm3K8YM00vU0GGP0S6dKc7zfT+sbfoMhgl0AMSJhFCpn iGo0P/h/M3WgDMgJePkJ3wabeg1MjZa11vMoyn6OF/ycurWaKAPLT5g3ka2awbo/dcHw4WvI+/N+ f94pMyX3J5ls3nHFBqEAoZ+/GUxM2AjETDi2AWM0wWN1ZeDRuZn4mOzp4AiyCExMoCgJpOPWx0ql 5lkEaJ5NEhNwcuJmskMBxFpKOAgdxifT5Hv8xiOHYMFOVpWEahgiE64ZxnoFLoR73qNOlNvzx7pN h0XJoN4oJj/4Qfxsad6UC8GJ+jDgscCy1gkcKwk7PI8y5p403iUd2oDfTPKf+ES8gxqxxnguIepP /ZIYUz6UyOQifNLC0luOuFducuA6ZSZtBByEIQjhB2+FK3yEVtIuPI+QRz0QYrzv8A5pYElmB6Hk JEG+1I8DbBEOIXBmXQr9EIUJBQ7FkzblG88sChnKLt4uiPzBgTxJ39sNYQhhlzxgMuzWCMEMaXvK 69jxLJjRFrxDHUXZI0C/ceMN7el9O5kzSgQGEPqDncgReZ6xdKKAoJSxTshD52i7SuMsmWY9v+lH rqzzfLJv1fM+zzBG+dCfMew4UR8MO/AajCbwN/owCgG/qbPzN54pN0Y9LYw6jMtahDWWUF/qhHIL r3DDRa1307rvdfL0MJrhnfb5Bz7D2GPc06bwMgQo+DQKWi1Cia/U/qw3ZXzTFvATrzvv8KHvsL6W kCYwL0fwEXjF974X9wf4CPzIPyi99RoDyqWva9khgLKFF4xzDbcwKzNK2To2WSEIopA9akyFXV85 n41r8UZnS+2w+lstKugpK9iyyFiS5An9KS19yyNd+vN+tXeYHzFUYMx0gm/BZ32M+fU0v1F44Jfw Z/g5BH/DUNYMUWZ2ik2GYZMe8mE1IqKG+R1izIM35cLwDg8qwhhFDkE5ayXRl9m8DgMTMiLrr+Fx WRNj74477rD1uLfYvPiY8dsKDDejggzIKN2mk2VyYoIBDxQIrIBM7oScIBTQifFYMOHQqXmWyZJJ E+2e31zjHgOSdFCEmExRRqoRjGKPPWLh2J9DQGayc6sKSgEepB/+MN6BplZnoT4INYQi9vR4qvE3 A5F6kDZbSyOQQHwz2cNMsMyThhOMAIGedUUINAiN/p4/49+kjdAIs8DDs/XWMY5gCR547XgXJuMM mfqiiDGxky8f6kh5GCwoYJQbwRPvgdefPAihqSR8eJlo01LLud9DyAMLLPJJol1haHgHnGBgKIb0 B9rV+wkKNc9TDjyWpYyOerCjGBboJLlgxvoN6sl23YQQ0X/YeIC6Ejo6ZkycH0o7Chm4ElLku+ZR N/IGUyzXTET0SceFiYg06a+UgzamPcgjOWlRNuoxfXrsZeRvUbYI0PcRitkYA95Rjl9wjT4KT6Id Cd9DcaF9GUOTJsXKOfcaISZDvCCViHHGmi/CbuhbhLgxBhsleBFCSdLLhgeGcQRvw/MCMe4xesFL k9vD8xyGgkrE+HaeUOkZrtO3UWJRgMjD+Uy1d7K+x4ZK8FS274fgjYzxJLmRpdH29TR4D0GDcG7S Bwf6lGNGv0IRw5vlfIeIkEqEYYzF98yJECG1pEfaomIigLI1c+ZM86pfaAa45SaAPmWyQY/Ni8dF ihc7vl5qQgbnIj5hA53dplHGli9/x+bA5+zv16x9l0eGAYT7ZgiFwOemZtIpfZdNtDCQe9iu3+ca fDbLtUcYROEn8DMn+DpjC2G/vwQ/RIZL7gY5eXIcrQM/Zq1mMgKKfODVhA2zuRPEM4xXDD2lskn8 RPr/stb/zDPjsiRTR+YBp1rEc8gttQgZDSdCNUIOrpQny0/gvRjVMdShlOXBxxhvT1tmjMEFJsgy 1vIkE3uLSTAXLIUMHAYTigHfeCj4oGDQ4CgkdBAGiHcUvl2xYMAzydOYdHwmURSMWoTAzxoBZxYI 5ggupMEgZKKjQ/FNeZzI18vh1/im4zHoUFZ8nRATMnVC+cCzxT2EbreO4s1hrRbhbkzWpMEHpsk7 WKupPwI9IXg+kSfz5TfKJWEqlA1c+fA+igPY4CHib5QAlD7PC+GS/KgP39QV5QPFwcNwSJ91CG4h RhGrJyyLutOm5YgxAM6+eQjPwEjwPjI4sW4hDFJ/PHwoMeBIu9K+hInhJaSeYMO9Roj8wYz2wnOF osXfpE0bkQ9eOLAnD4Qq+kCSYaCs8j6YEj6KdZowCVd2wZa+ybpD1okRzokAiLJXT/9spD56tnEE 6O+0bbmxTGrwJTwWjKmvfS0Wqj2MEQWOsct4qaawlCsVY5s+waRejvCkoLwwZlGmMABgHKiX8PLi 8WWMswaM/kyfZPdE+rArBT6+qQehuSgGSUJJ6I8SmEzDf9P/Uf7gPY3Uxd9P+xvBFC832PCbcQ2/ SdKkSaE3bDV5vd7f8BN4GjupYjiqRPA4NvThG5wqEeWjv3m70Qfpw6LiIsBxGruYNfUEc72zLuyn tqsU5x2+YlaeF8wystAEnL1Ni+EsxJdtEOIZQ2AcahPLKaecbNFBu5tCNjQyBuGlLUf0YXhULXKv eLXn4BONGh/wvCflo2rp13sPHlYPUffSccvcCp8msqg/BM6c14pMgMzJh3yQEzHeoXBhLEOeQxGF 8PgzR6CQmu4dedV4hqUdzPvw9HK49gfvOMe+f8mb8zHpA8hT1J2/Swl+BDHfldNBmI+QV+DR8JZy 5eV98mEuITKkHMGTWEbCjrAYM0sJuY/12BjJKQcy/uDBpU9l8zeb5HzYhO1TbGLfx4RjPGV5konE xSWEXbfw8ZuPd36UB4R5JiAGGJZBFmrSmfhwHUGY3wwcOhKfeolOg8eIPM8+O36LPLG2sK2wW6+x FuPWdaUNpcQ7djIvOhQaP++TDoSQ09MTC/N42CAsKgj6vh7KBwCKKWulEBC5DzNBIHAFCutpNUKh QylBqMIqAy7gRggWgx5vI8oZXjPS8rDL0jRR+FB0KpFbZivd9+uEDjKwKxGDHSbnxKYhfCAEN5gZ fYE+MH16/BusaA+34CPY4o1qhMAFnGA41BWvWJJoRxg8YVwIqngA+EY4r0Yo2DyLhxLCc4ZQzDWU S1GxEGCcEWpXqY/SP9mYBqOQK+G+Zoj+QL/hOnyoEYI3wE/oh3hnSwmegXCDNxWjEIpbI3yN+YU0 mAgxLrDejXGFQPCFL5TmFitn5TzL8Iu0CCGGIyhQ7gg7byXBU2gDQhERKjD+0Nalhi7a3du70fKS HsINggeRDfUQ62vhPfUSngfmPVFxEUC5GmKTDR6ynp4ei+DYy5T/V21O2MD63CDjLSNsrv+ghba9 YcLts8ZPjKEY8d4bb7xuYbLDI5kHGQXBlb6L95Q+i9ANXyAaCGWeeaYa8Ww5uSX5DvMexgk3vCbv VfpNn2UuTYvgixhIMXaynp2xVIkwVrF2u5QoP+lgEEVuY7zXy3cIFwYnZAwUHaIJqB9yGLJV0miF LMdyCrBH7sMwDL8lqoH2wsCCvIVxvtz6+f7gnawrvN5lTuYJ+gRyC+cxUgbkPyJ/MBq7AyD5vv9G FmYuYr6g7hjsKvUDnBZgitKJQlUqFxHejfF6woTV+wXHNHEdRwjlhXxujf/K798l1jny9oxV6cr5 VbxcTgwWGh2hA00ZhoMAz4SNkE0oCYoEA4qOhDeEDgNDYhMEFAyEGg99KZdHtWsM0FJiAHnnmDUr vgsTY3dHBiSfSrtVwTQ8tMjTxjL6H/8Rp0Pa1IuOnyRwSBJ/u5KAgsWAZ4DAnKoRGIELBAOAYCCk RdkIywRjPGxgyCCibu7BKS1XnEL//62ltMEo2H4ehocSijUHJZGBiicMpggWCEWEduHyp81ZrOsE s4OB1Eve57DcYPnHkgQTTXrW6E9Jb4f/Br9qVNovsLxTPj7Vwo+qpal72SFAf2c8VqPSicafZfJ1 D4Vfq/ebsUyYB/2vHDHBElqMQkbIC0pjNYJfYc3FCwa/YEyzqx4CAPyV8Dv6e2n/TKaJoMCEnRWB MwpZo4prWuVxfkx6CArwEcoEVvCENIVJ8oDXs8YZA2K9hFGyEYKvtwrPRsrZ7c+iWOH52sMmkP3M TeJ/843njHAp1pRtZWETPIf1HoI/Iewi/MITMAAR1k9fZh5njuQboyXn4MGPMG7iSUcod6K/8ww8 q5pAzvMYHzCalBooPa1GvxlX8LtGCCM1sg48DYMS83EpTZ8eX0G+KVcnZAv4InIb6THekXuITAEP FAmWffAbHunE38gCbrTC2MHacowq7KZaSh427N45eAneMD5OYIAMU47HINegTPUXb/CBj5E+664w 4kMYGSkTfOjrX4+XUcR3yv9LH0P58vmQciF/83dPz6rLJ5iTMC5j4ENppl9icMKAznINPIdEChER QP5OLLvBwQFG9FW6OW0L5t0PzibmAAAgAElEQVRCJoYXk2gUrNI0oHccBHg6AB+UBAQRBlCSGFhY NXGTwoxIh2+oPwpFssOQBswOy7IrZaTPACXfauTPURaf/D1tOi+ud0J0iJX1cuKi5T3Iv7kHg5g8 OR7AtYSx6OUK/zAoncCTPMCTUEQIpcw9A7Usa/Eb6f0LNmCFhw5XPlvz45GDkcGcEDQYqDCa0nVf /S0FDIAdfMgbyxdWJHDJglDy+Hi7ZpGH0mw/BOhvkyatKmQQioshAsGC/pIUMJyHVKopghrvuKWR 34xlBDSOYCCMCCHNJ9py6dTyupd7p5FrrVQcwA8+C04opnisCBWG4NNsFOV/x1eb/xdeT5pJoaz5 VJVCuyKABR5Fi085IjTR14sl72MsQA5hTNNP8brQl+lbGC0Ji2fTMgRdBFwEZXbcxMjIvI5BEEM3 XqF6vKjMj8gfyDrVPFLJMvKb8pUj1tnafgkV146XvkPeeLvgW5QbJaFUGaNsRBlhrGKJRyVi3CNb gBFGNZQDDCQQcibKBtECKBIoMRwzwe8kn8SQivEXTySKXzlyRYx75Xg116ZNizeBK32/3POlz1T7 m/ITGgm/QZlCMYJ8PTC/cWhUConnPjR9ehwd5kZj+hyKHhuzsPYOPklUGgZE8kJ+pC+CF0ZqFEry 4D0UevBGtnMjN+Wkb6IYEm3C/Mc8yDIg+ni30KAiV5TBB8EocAfDRJwqhQN6B2YQsH6JDuhWxWYV CpgKHQmrMgoZxCReL3nZeJfB7sRaAEJiSJ86wyi/+c1YSELZcHLBig6Kwok7OCmY+XP9+S5nmYHZ tEJgAAcGKkIabebhiUw0tCkTDX0CIbXC/NUfCCJrDO0Co2Araya1Rtq3kUzpR0yQ5CUSAo4A45kJ iVBoJyY+JjfCixmTPlaxUBL6QthJJWLiZZIr9bRh/WU7fowaTNRJC3CltDrxOgICQt1//VeMB5EG HtqEwIm3gfMC0yS22U4KdWmmrbS6DwG81sxTKASEDyNDsN6dZQfMMUSYoEwgEOMV5xv5gbmOsPnS zTUqIYhhnLQx7NRjAKVMyDzM4+WI+TW5gVC5Z5LXiJKBXyHT4flLeumQhVhLS+g24YuM62qeYZQo xj3zMLIGCh4RCSgXLCEg0gpFAg8cnkMwnDChzyvm5YIH8+kvUUaUv9INgkgPOchlxmrpMzew5AEF hpBy5CQUSPBA+aEeY8aUT6G07OSZJNKi/iitybIQacFO1ERZ4UWknzFnTZoUv/2Zz/SlAj/FsI/8 7uteUcSZzyAwpx8SxcSyEozvyHXuSXM9IH66c/8d1C5VwwLCuimn5G+/RqO5oILQ4qF7aSkUWIYI 6cGSjLKHIO3xx16Gat90MGKKYQBf/WrfYnUGEWUnPX7DvDgPizo4cd8VUB8wCG7lcPB3Gvl2q0cj 72T1LDhjTYFZooy5BaU0P8J8wDItAlfCJvhm0oKZUZYsiHQRkpOWsyzyUZrthQBjH0E9aRGkT+LB wtsPH3DPOn2HMZKcJEtri7cdYxQTnBPPkz68BiWMvtiIpdvT6ZRv+AsbGGDwI4TJQ6cQvrDYps0D pIh1Ss9pfT3wBCEQwxdQUhCM2X2OJRCsV4KYIxHYmdOSa5MIo2uUkK98fNR6lzxRipBbyhHyUL1p 8T7LTnxZAGMyacjkLEB4GQJ8tZBrLweCP0pAUrZIroNFWQNLFAgUDF8q06xB3/P3b/KnTQh17I8s AB8nmgolBnmRjZ1QIJFdqKMb2epdrkF7IP+49xMFFcU3OcdQToxXHj7JukRXsrxepd+ULfkMCihr GUk7uYERMp0T/dnXT/u1Tv5uG2WsnkaA6SSFjnreqfSMKzzJ+whKxBjDkLCkYIVh4OMWr+VBIT2Y B65bOhlpwUAhOjppIjQR28t1QvCSyhjnUxBWyLN+VkX8djr/VnPpp5ND/akgGLK+DmGxHIE1QhMb rKRJ3ka0DYwmuf4szXw8rTFj/Je+hUAfAkleQtgHky2CAmscsCa7N9wnzL43V/8FX0F5S06mpM/E SD/Hml5PiNLqKXfGFYRFPASsS2UdKrzZhSKiElhLkoxO6IxaqxadgADzFcIz3hXGNMoDxN8IyE7I KmkRChzeYz9wvFK6GKzdaFTpmVLBv9JzXGfDMsL6XbFD6UKQZ+kC+cDHGqknz1dT2lDAIGQAeAAG FHhDFgRvb0TJQ9EmugoPJV4n+oE7Hti6ns17iOxJKpf1ltuPHHDvJ+Gvpd4z5FJCXJ2SSpZfq/WN jIui9f3vV34SRRNcqF83kHXjziE290hLGYNR4P53CzWhgwg2uG0hhBsXcBBqannIUDDw7qGQ0RHp YHQ03LVYiNxrxpolBhZCQpJgHjAd3q2kpCSfb+ffYIPly5mfW6Z9UIIboQRpE0IXjIf2TArEaeej 9IRAvQjAL5j4WPhMuAljIunF8jFRLT3nUzzDb3gNllQMGvR1Vz6qpdGp9+CpvoYLQ1jSggxPZ9MT kRAoIgLIJgjPnLNJmJgL9AjLvklX2uUmygivSyXCw8OmFhg3ksbkcs8nBf9y97mGZ5p1ZQjuvhOx P0sYJuOTHQF9czK/l9Y3/AFju6+dTyvdZDqsb4MX10usAQQ75gU/n9TfJS28YSg5zXjg8dhh/EMO cu+a55HGN32X8jH/VCLkZQyFnS7vev07Shmj4dLqOAgonCME0RmwmhLGQuw1eWCVRhDiGysN4YLV Og1CVOkz5MHgIQ0IIYtYbiw2pQtTcd/irWHQsm6q0wkrGDsUITQSG87k4kIoTN5d5GnigALOglZC ElwRTDN9pSUE+oMAfIIwYqygpRNsUtEqlzY8Cb7D+1hUWR/G+oRu4CHl8Ci9xpoKBD3wIXQm6Q3v dkW1FCv9XTwEkB34MB9mueOp1xx+wjxZib73vXiTDebPavKQv4+Bu1J6rDM699x4yQLnUiW9Mf4+ SgnrpGrxQX++v99Zp1+uXOUMbRiOkAHZWRyDNHJi0oBULp1Gr7mBynewbvT9ep9n9/NaSm4rcK+3 /Gk/l7syxvkZHFrItxO7CXHeBp+89/b3MpR+w0zYVp/OTlHZzhRBhr9ZNI8bHiboA6aeTpN8BouD n1FB54dxuVJWWhb+Jl8UBRbOpuX9K5dPUa6BK2GneDvZqQdBspalLY2yI/Amt/5NI02lUQwE4C9r G/f37aEpFdtGc40Pv4tAbjFm4w54D9ZmQk5QGJKeGsKRCF1Orp0oLT/jCN6BoMZaEjYGwsCRltGq NL92+xtFF74OsRGKjDAxFvq3+AgwtomYSYhSmRea/PBqsFa1lFAUYKHwGDwrrHF1+aj0Wf+bHYsJ eyxHPT2xgYQNRroxVBglFfw8OguMUFCTmHIAdRZyEdhjtEPRzYKY45K7eVfKI1nXSs90yvVcpQ8O LeRk+TttGxVOlHeFDCHoPttr+V47BIPzNYpAeNkQYiDic53hUTwYEi5zlAV3s9ZTbH+GEEQWWbID DoQw5Ts/xlcq/0sH7hZBCuUUJRXPI8zY18pURkd3hEB5BOAxd9mWpZfZ9l0P2p658CIMPxzu+Ftb lMXnddN6imAMgqfAK+j/TMSMd8KDMOagPDjBk1DICF2uRPAwdhcjNBEBCs8+/EsUIwDG4A3O8Bjn 58JHCBQdAcb0pEl94Yl5lJcxAm8qt24dRQH+RDg1v3mmlqzCBkPs1pdU7tgtGU8Y51Sxlh0jdDeS G+Uw2mP8h1gmU+pNShr546ea+5dwV+aJ0rVizaWqt2shkJsyhpCzyGLPbrNdL1601YHXX3+9dbAF kZV6hgUGP2Ij8inb3uZvto85J9IXgWA6rFdiC3Ws0xCTNpYIwgvZ2QdhB6aI0lBNKOJdX+/F4EEB IxQPdzMMi0WQWJNEMbPHcwhOYItizMYFfIuEQKMIwHveNOngVXOB7GixaLfavrzzzIyLh+xPFoux oWknW1scLPzHvWP+3WheaT4PG2Q3K/o9i8jLETyFcVKJUNgwYsC3MALBY6p54Cul06nX4S94w+UR y7eFMYaImkeg2thvPvXyKcBLyoloyEiuKGDw+fWv47Vs5VOJr+L9IS1X7pj3Of8LuYi1WknjU7V0 OvUe8icHdSODwrfZbMh3lMyqzpx7yzmUWXjcsipzJ6SbizKGMITgQ3jicRboOmnSpEjomW/mELxj CEF7mjays2k4Y+1gnLcYkUbuOWsV0K5cwfD4EJ6IJRrFC2UKlzxzCh4yPGWl6zlKy03nZntZrEYw G7ciwcB8Y5DSd7rxb8eJeHKoFRNOnHNn/1uksOCskIb3jDBz7kizeBxtpxcfYNuBwVf8EFWUtMU2 mDEQoagtN0mDd/CS4b3HgNQqQkghe6zRlQhFwncYq/QM7JSDSVl3yRlmLvhUer6brsPjsQRLN8in 1RlvjKuX7GCookTB5FPzbHLxaJtsUi+fKvKOe2p4gp2fIRQFBHmITTUoWy2ZKH46lqX4TWg2yh7G bikDsZxpfotIPuSQZTyJjWz24fg28o18SzSFK9aNvKtn+49ALsrY26bS33333RaaN9cG2PAoJHGY 9aiNTYqAIaN83WRHw8+0k0gJJVrLzCV4x/CYfdf81bdzRHcLyHcn4rwM1lxgqcE6gULG5I0liOu4 0X1zjWrFpIOz6xECADsBYY1FMIJpkaYoRgBrELHKMGUUMpRXUXoIMJ4YV9+3LZdQRFA+OpGo11Jz fRCaiMcdg9DNtlvDduZmhfdwH2ULLxk8B2+98x7Cpi+66KIwa9aslkCDoYfQndmz+wSVcgXBoIP3 qxrBZ1DqMPhgNMp6Mq9WlqLdo+u70a1oZevE8rAUgXF1hcVBuUGkE+vZyXVChjFxLSJ4CrsnXnpp bNTwEGjkmX//98qbc1TCh/Vj/Tn/rFJ67X4dz+Fpp8XyIdj4FvZZ1gu5t9bRBVnmn0wb3oxy2KEi SrKqocY0vsqz/foDgecdQ7SnpyfaoOM502xgyP9kh2J4qAIK2UmmqWDBnjx5ssWqHmFKz9sWe7yH dcTTTHgY1q+8m33JLTMIRXQGlC/Otvj0p2NFwYuFZRrFoRaxWxeLxTk4GgsHih1CF2ePsT2tqA8B PI8ouuwUtPnmfdf1q3kEGFfbG7Cs37zEFi52soUaHjNmzBgzdqxvltsb7PDT52x95vsiDxiKGDxn H7OMYBCCR8GvEBIPt11czuTQlhYRkzA7uBKi6AJOf4uCwobBh0NOW1il/hY/0/fqXUieaSG6KPFD LN6WD96xH9ghUZ3MexppVrz1HgmE7AM/IlQa45AThqWiEPwEgqcwhvBkoSgwZ0N486t59OOn4n8x uA4eHG+jzrb5yFiiGIHPfjb+JrqBvQtc5swSH9oti92q+1NmlvAQTVagrt+fatT1TubKGMwWhnKy SRWEKJx99tkWFrJBuPLKKyOBB6v0QQcdZIf6XRMx5gNNS4ER8R47nLGeo5WEEoYXDOaDhm5RlBHj oEz8hvww5viv2v+azBcdWEwsMDukcQK7aHUEUMgIwxKliwDeaT4YSVA+OpXgIQg4+9n2o/AevF2E K/7RDu16j+1p/orFxBxjJ61fZ2cngMNE4/rwHsi/W4XNY4/FE5CxxtRIoXirQ0koKBO+KF8E2DhH FCOAwYilGnjt+Q0fQkaCf3GNe5uaxoOByAm2zfyIXJI3GUuNiLz//OcQPvjBWI7pbzn23z9Y5FS8 SzRpd/s6sXI4YshnN1xXdss904nXqC/Hjaycljuxir11ylwZIyeYykLzZyP8/astWsDyw2+ULbxe 61gcDWFDEEyI+xDPtJp83RLlwPVezmrTiDxLlVhQjwLGQkwxnla3cPfmz/qoTid4Dx4wlK0vfelL kUeMa3i/4DVcP+OMMyIYnC8VARMEHbZ9FgkBIdD5CBAuzppWNjW78cYb7Vid08MTTzxhAvjTZuz9 WHjMrDN4xjBsw7PWWGOIRRfV731KE0GO10GOsWW2Vo4+43R/8yD6hbM9iRJCMROtjgA+Cc6f7UZq RZgiy6SQE/KkXJQxrxBudxQwJ4RBX0y/3kqtBCGpCDuZeRnxYtEmrGFi4SpnLzRLMDLWcBRA12y2 KnpfCLQNAnjHkuTKqBt/uOeh08nnWvGboy7Gj29FzspTCAiBvBBA/oHnsHkZa1ofeOAB837EsX4o XWx0crltL8g6V0LLuYaMdNddM804vLPJTxixzb2bM+FlJ0QRBarZI2cIQcM7PWeOlmtUa0YUX1F2 CCAH3H///ZHBliULO+SxQC9RHRtK+RICkH/I2bXP5LV8S1Q9NxQxNHPC5VDG0iLCY+rdaSitPNsp HXBf6SBtp2KrrEIgFQSISEr7qAsZf1JpGiUiBFJBAOs7m5ZdeOGFUTTQM888YwrJnGjHaTcU4dX/ kG3jzNmI7PiK4obQ+MQTc0wZesl+x2HVqRSogUTgJdi20jgSgtDEW26JN+uqd51ZA0XVo0KgLgQY Vw899FA01jCC5O0UytUzVhciBXvIrRFYgNIiosM4yJiNO0TlEUARUwhneWx0VQj0BwGs2SIhIASK gQDCH8dpbLvttlFI4m9s7/KjjjoqWtLB0Ros0xgzZkykhPEbLxpKGks7PvrR08w7NszCFltTFwzJ v/1tCGef3Xz+XgeWgPimac2nqhSEQGMIcNTPP6/cpICQYDzQeZKUsRpo4xVDMSCsMG1yRS/tdDsh vU98IthE1Ak1UR2EQOsRYJ0H29qLhIAQKAYCRAWxmyseMrxihEU9//zz0Rp6FK/NbNCOs90L7rnn Htt9+cDeTT147/XXF1rETmt2mQY9zhM755x0lCfWQ/3iF8VoE5VCCIAAGwwREpwnSRmrgbYZqsK0 aX2HGdZ4XLdTQmDXXVNKSMkIASFgAp/OMlQ3EAJFQwCPF4LfXrYofbwtEkXRwirPN56zPffc0zby 2Tfa3ZXnirKmFRw///l0whRzlnmL1gVUnhoI4Ayx4dDxJGWsRhOzu4/tvm/hBDUe1G0hIASEQEER YDJjUhMJASFQLASwwKOA8SklFDA+RSOWWXAYsUgIZI0Au5izrrDTqQuq2FwTsm6Jg1dFQkAICIF2 RYAziVh0LxICQqD9EWDdeSt1NHmz2r8PtUsNJk2Kd+1sl/L2t5wpbkvR3yIU/700GQ9pSTAqfpur hEKgkxCwc6/tWJFOqpHqIgS6EwGMKmwnf+SR3Vl/1bq7EEhz87wiIyfPWM6tgyLGrkFpbAmbc9GV nRAQAm2KAAvuRUJACLQ/AoQccy4XG1+IhIAQ6AwE5BnLuR05q+zrX0//DKGcq6HshIAQEAJCQAgI gRYgQJiiSAgIgc5BQJ6xnNuSUCGFC+UMurITAkJACAgBISAEhIAQEAIFRECesQI2iookBISAEBAC QkAICAEhIASEQOcjIGWs89tYNRQCQkAICAEhIASEgBAQAkKggAhIGStgo6hIQkAICAEhIASEgBAQ AkJACHQ+AlLGOr+NVUMhIASEgBAQAkJACAgBISAECoiAlLECNoqKJASEgBAQAkJACAgBISAEhEDn I6DdFDu/jVVDISAEDIEBdnokn3fs1FQ+ToMGxWzw7bff9kv6FgJCQAjkhgA8aK211oryW7p0aVi+ cu/6IUOGhDXWWCOssMPFlixZklt5lJEQEAL5IpC7ZwzmMnTo0MC3E4xo2LBh0ccFI7+nbyEgBIRA swgMHDgwLLYT15955pmwbNmywN8QAtDcuXPDCy+80CsMNZtXnu8jpLWTEklZKXM7kLBth1Zq/zLC i5599tnws5/9LFxwwQXh1Vdf7TUc/eUvfwnnn39+mDFjRnSt3Wo7ffr0sGDBgrYoNrjfcsstbVFW Cils26ap6ipo7srYlClTIoZDR3JL9SuvvBJdgxHxm+tFo9deey1iiEUpV9HKAy5MGJSrKKTyFKUl WlsOLMsoYtdff3249f+3d6YxtxRlAu4rEAzuIAquV0VRISKIorjFXXHFqNGIiYlxSTDGX/4nMWGS IY4Jzk81uERxRY1KXBITV7gqcgVXDEhGwxIkUWDGweHO95R5L2XRfU6f+53TXd3nqeT7umt/+6n1 raru8/3vN1/+8pfTKvMRRxzRXH755c2ll17afPOb32x+9rOfNVNbDPrTn/7UfPKTnxwX8Aq5f/zj H29uvPHGFWKMF1S247Hftpz/+te/Ni94wQuaU045JfVFLFZT/37/+983b3vb25qrr746tRvmRvRn +WJ2zaz27dvXsNM3BcPOI2PAVIxsN1dSY8wDBjumGBOiBzzgAc3Tnva05vOf/3zz2Mc+ttm7d2/z 9a9/vTnzzDMTWe7f+c53pvsxgHQVLw31pz/9afP85z+/K8ig7rXJw8PD58QTTxyUw6LMlGcRnSYN 6LTLuRtWnvl72ctelvqcCy64IC360P/85je/aZ773OemY0E///nPmzPOOCPt3Bx55JGTwMKJgikd X0LW+9znPrLdAIEpsWUeMJUd0g0UVUqS52dnnnnOySef3NDnXHXVVcnOMWoYYVg8Isz97ne/ZL/t ttuaK664ojn22GOTveZ/7Pjt37+/Oe6442oWM8mGrPxRBlMwst1cKV177bXN4x//+M1l0JLyIMpY rOSwEv3MZz6z4crkKN7feNzjHndw1+mJT3ziwfc5AFJLw/jzn/9cVUOtTR7qVnQO7G7WYJRncSmw Q3H77benldbFIafry6SGFeb73ve+afJCn0L/88AHPjApYCwGffe7300P+JSnPCX1PUyKfvSjH01i snjrrbemPnIqE9sf/OAHDZPJmGjWXLNku7nS4QQFbXMbFoO6KKKIsTP/q1/9Ku1+3XLLLaktv/a1 r01s6JsJ86pXvaq5+OKLU199//vfPy1mf+c73+lKtip3XknhqOUUypk+lLHhM5/5TFUMu4SRbReZ 3bszPh199NGDzgE2rozRCNmm/tSnPpVWf573vOelbfjTTz89rZbgj2LB6jTmyiuvTFdAMIGqpWHQ UJmkKU8qntZ/8PnezvHTWjpe5Wktpn9xZJd6Su8c/YvwSyzUwzvvvDMpW0996lPTu6ooA2984xvT +6nUj1/+8pdpJ55w9FH0Q6w4n3322UlpWJLF6N4MGk94whPSMczRhekhAOzzDxT0iDJaENluDj1s n/3sZ0/mCNsmSNDvnnDCCc0jH/nI5o9//GPz2c9+tnnpS1+amNBG8Ge3k0UBrvRnKLD0UfzhX8tY G3yYJ7GLx2I7hg+RYMedd3VrM8gZH0thPIAnrHEPv1o4IxsbGMgDUxR1ZGfsQonE1MA4rwPIx1/t bGEZ/Ch3eP7tb39LPHO/FGhD/zaujEXBvPjFL07K1cc+9rHmjjvuaF70ohellR46F0y8a0R4/uis 3/GOd1TTWdMQaABU/BpMXrnHlifKmEoLH/5qGCRoVJjobMfilPOhvtdyhp46RFnxvsIcDdx5t4Jj z7wzdt555yVFi5XaZzzjGem5UdI+/elPp8fnqBBxWH0+7bTTUj8V/VNNfGhbLFQhK4MvAzR9U0ze apEV+RjUaIdMcFjJjT6UescRSwzjQS2ckRFZMbUyhisckRUDP/remtnSDqOO0v/BlvqK7LXW3wR3 g/8oR+Y5lN1ll12WlDJ27ilX2s3DH/7wtAvGu88cnz7++OMbds94f+wRj3hE6qfGHttKPPRNTGL5 IBL3HPW65ppr0j2LRrT7WgyMGReQk/rJcUrun/zkJyf5OVFRC2fkov3Aln6TMbtWxvT3fAyFkzfU 4WOOOaZqtvQ/bAJx5TUbZM/Z8ioD/Dddf/f81/XXHLhjZzv8ttv/u7mr2ZxuRsVnkONdMSo+BcYu GZ0LFf4b3/hGaqO810EHBQAMcMZuwHlDoKOkEx3TUGno4DA18KEsWb2jAtP4KD8G2jENZcQgx5Eo lI4xDfUHOeCD2btzNA5mYxra429/+9skAquzm5wM81bakYf/oznplDPu8chXX3lZ8/d/7Kyc3sNn fQ7wpz4yuDJ5oW5QTxmIH/KQh6S+hjC0JRaF+MgQ9pe//OVpYjR2e89JIBeT2a9+9avJmaOV9I/0 l8jPBwBqmaAxebj55pvT1ypPPfXUdCSLfouj6NQ5+vyaONNf/OQnP0mTMdrnV77ylSoZ0/8zbrKo AOOzzjorlf/vfve7KtlSxigbfMmUsueP96Awm66/i/qeJMCSf/uv2Nf87107H81YEm433vQvzIkY p+iHWWDBjT4LN8oYd47/w43xlcn461//+ur6JxQFPsSG/A996EOT/JQ7diazfBtg7PkcZUX7Zjy+ 8MILmw984APpqCgfS6GuMjbgx7utNXBGJsyXvvSltIHxvve9r/nIRz5SJWNkZZ7Ptx9izs9JE75Y TB2ojS1ti4+2cFSYcZNxinva4BD197CdvvzwPXc2//4f/9kM9tlCGiAP/q53vSudj37LW97SPOhB D0oTCDqic845J/3xLgdfPPvxj3+c/n74wx+mQk21ccR/X/ziF5vPfe5zo0/sYYgWz+AGo7H50PiY 1PLezXXXXZcmMHRg0YGMVWQMCnw9jy/NxQryWLKQP7JQXihANPox+dBJclyP9xV+8YtfpPpEvZqr YRBg8EUBiMkgfQ4rdnS6uKHIUCYoCCwO8cI5X1lkgl6TYSKOgsPnojltgJ2vajHJoU+o5Wu0sGRQ ps9EwUF54AMpyMnHBz7xiU80j370o6vhHP3qRRddlOSGY62MKXOO9lNvH/awhzV8oZJV/RrZUg/Y /UKx4H1x6iqTHVb4a66/Q7Z5GLHAwrjJoh19EvMl+i3aEG74s2JPP/ae97wn+VE/iVuLiUUC+ifq 4mte85p0/JIj39yzYESYWgx1kDEAg2wot6973evS+8IowTVxph4wZjF20zfVyjjGWsr73e9+d6qn vH/9hje8oUq2zMXYvUUvQUYWuGhnY9TfQVsGBUWHQyOgg2G1h06HK3b+MExYaRT8jd2AY1IRK1Q8 w5iGysMHTzh6ReVBMUpcJr4AABdHSURBVKODHstE42N19ulPf3oqSwbfMQcJ8kYGlI2xO39kYSLK lv2znvWs5pWvfGVacRuzHsGEVUDeO6DTYVI39k7mEPWXSQ6TGq7wpy1hsPOHYdCDR63vYTEYs3OH 7HwtFCWChQd2GFD6a1h1hiN8qWccR2eBDe6sNIecjAE1cYbnYx7zmKQw0J/WzJi2yvFa2u7evXvT eMqxvxrZUg+ony984QvTO+PUURY8aq+/1OHaDPWS8SQWO8ce20o+yMZHR+hDUbhZCKVfxc54XNPC Fm2IUwQsujH/RDZk5C8Wb2vhTBui7+SoKnWgdsaMSfRHvI8NSxaM6O9rZctXShk3WTR80pOelPSQ MervoMpY2Xi77HnDGLsBx2BCQ6ih80OeOG/PigMfQhl7Is0EkXLibDuDLB0Hco5lkIddAlZiOYY2 piyhGNIR/frXv04fiaBjwn0sQ96UE0fd2NFEoZ/zztiqnBmcx6wzi+SlrfM+G7sKrOqy40rbQ+ba DHLx/l3IBtO4pw7WxBnZ+GgUZgqM4ccCDztNr371q9Okt2a2TCK/9a1vJQX8Fa94RVLOaq+/tbUn +mzKmPGfa5R3LXIiDxPb97///c173/veNMZw3A9lnF0dFmRqMbSffBEO2ZCRP0760B/UxBl5UGpR GuhTa2ZMW7/pppvSYvib3vSmpECymVErW+b1zF2ZK7JYfu65545Sf6s8mxQNg4ZbQwOOhkBnWIOh svNL8ZzFZbclVnDGko0yopOggzj//PPTTtBYChmdLJ0pP+LLYM9xHnbtYEY5Dm3yAYpVlw9+8IPp mMGjHvWoUeSJ56cuv/nNb07vH3z0ox9tnvOc54yu1IdsY15RSvlJBCbkNSqo1GGOdzO4MZnATn2/ bueIMFfqeS0G2egX6B9gyYJEyImixrskPEMtnGmrTHhoGzBmUadGxkwe6Nf43Dk7Tqw+s1peK1vk 5Zg/7xUz2eEYEBOzGtnW0nZKOaibjPew/PCHP5wWYKijY4xppWy5Hfm+9rWvpdcVaD8veclL0heo kZOF41rmUMiMTDFP4V0hjlQzf0Bmvm5ZG2f6duTF8E4W77TWxhh+9Pcf+tCHknLDNyJ4BYArpja2 sYnAu5h81Iv+n/Gfheqh2Q72AY9UEj3+MTDzQh3vFWBoJGN/fpsOhlVI3s9C02cQGctQQZCDwY1j gVR0GI21OxYrTHTAdLR0cBwvZbI41kDBwMXuExMW6tLb3/720fnQeTIxrYEPbYz3d3hfDFabbmPs AY75AY++bZV2zoQRRZ56jRLPKuRY9bhNbmRktZnfGWJw5jeIOFLBsVOOVjKgUKY1GGTlvRa+EMdE jHeB//CHP6TdEc7p0yZq4ky7iB+K58j8t7/97SoZMwbw/intl485nHTSSUkR53g/Rz9rYhuTM94R ZNeEyQ/jFnWB+rHp+ruo7+nTRob4gEcfOQhDe2fBhV0HPi6AQluTchMysjDA0XyUR/pPFgmoB3zC f8y5Uxtn5k1wZb5y/fXXJzn37hz95UNOvJdVE2fGIcobWWtmzPjDOApb7il3Pp6FqY0t9ZK5Igok ihgLHNQH3ssbov7mH/CoThmjwBhsovD4+gqT2LFNNISxV3GpPEwUqDz8sZU+9oSRysuqd3TANQwS lBNlRt1BvjEn1DXyGbKNLZoQDfE1xVX6DsqK+ouJXZJV4g8RtpSRsmRiy8CHzDUZ5EI++iq4YmdC EZMKZK2FM30EMjJhRM68HtTEGDmZkPEHx+jjamXLmJUf+UJeZI+y3yTbRX1PEmDJv5qUMUSljPmj rfNXoylljDnTWAvGixgFS8LkcpbPsCiNIf1C3lK+XPYh5enKK+TBnz6KMQtDHShlTx4j/gt5ECHa VHDGHs+yifqbK2NVHlOks+alPwz3NRgGFFb1orDGkomBmBVGVkQxyDO2TDQ2jspw9A5ZsI9touHQ kORzz9KosY3dU8rhXai7rDrWbEoZa2hvXbxoeyhimFJRjDbaFXdod/r4kLVmxsiJwpjvMpTjZE1s GbNYfc5NLl/N9TeXuYZ72tPY49kyDqWMeVkvizu0f84yl7N8hqHl6sov5C3ly2XvijukeylPbi9l H1Kutrza5AnOhM9lb4u/LrcqlbEhAawCMi+gVeKtO2xb5Vl3HqumV6NMPINl1l6STOiYJDkRauej qwQkIAEJSEACEhiCQJVfUxziwc1DAttMgB1D3j/QSEACEpCABCQgAQmMR0BlbDz25iyBUQhwpJSP J3zhC184+JsqowhiphKQgAQkIAEJSGDLCVR7THHLy8XHl8CuCXAUkRdROfPMThgv0fJ36aWXNldd dVV6ib5812TXmZqABCQgAQlIQAISkEBvAu6M9UZlQAlMiwAKGF+55GtlvEDPJ9D5TTq+vsknXPkt FZQxlDaNBCQgAQlIQAISkMDwBNwZG565OUpgrQRQtvgYB7tefGGNe3bE+CFDfufprW99a3PJJZc0 Rx11VHP55Zc355xzTnPaaael36biC6Hujq21OExMAhKQgAQkIAEJ9CbgzlhvVAaUQH0EUMD279+f fqBy3759aScMRYyPc3DF/y9/+Uva/Tr33HPTlV+Yx50fi80/j13f0ymRBCQgAQlIQAISmDcBlbF5 l69PN3MC7ILxu3MXX3xxc+211x78cVV2wc4888yDP7DIUUSOKnJFEeOT//ymkkcUZ15BfDwJSEAC EpCABKomoDJWdfEonAQWE0AZO+6449IP6h577LEHfy0ed35kN37/jStKG1d/W2wxU30lIAEJSEAC EpDAUARUxoYibT4S2ACBOKZ46qmnNjfeeOPB3S+ywu/e9753c/TRR6cdsgsvvDBdjznmmPRe2QbE MUkJSEACEpCABCQggRUI+AGPFWAZVAK1EWCX68QTT0wKF8cQeU+MXTH+HvzgBzdnnXVW2i07++yz mxtuuCHtonGE0d2x2kpSeSQgAQlIQAIS2EYCKmPbWOo+82wIoHRx/JD3v9gFu+uuAzvPxl+z8z7Y vZLbnXf+Y+fHnY9qTjjhhB0lrL5jindLnMT2nwQkIIFqCPDDH/74RzXFoSASmCWBw9ML/Tur6ayo 7/xE7Cwf0oeSwNwJHLbTfjGH3eueU4fDD8PvQHPXzi4avhGW8EMY8qR/6TJH3OuuLi/dJSABCYxG 4LCdvok/jQQkIIF1E2Be9H9pAX1nweemG64/cOsttzT/8/edT2HvOWzdeZmeBCQggZ2e5kBz8iln SEICEpCABCQgAQlIICNw+Pn/dkFz0823/HNnzL34DI23EpDAOglcdJHK2Dp5mpYEJCABCUhAAtMn sGfnnZN/vmAy/WfxCSQgAQlIQAISkIAEJCABCUyGQPeLHJN5BAWVgAQkIAEJSEACEpCABCQwPQIq Y9MrMyWWgAQkIAEJSEACEpCABGZAQGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQ gAQkIAEJSGAGBFTGZlCIPoIEJCABCUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBl bAaF6CNIQAISkIAEJCABCUhAAtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlI QAISkIAEJDA9Aipj0yszJZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6Ay Nr0yU2IJSEACEpCABCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJ SEACEpCABGZAQGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTG ZlCIPoIEJCABCUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAE JCABCUhAAtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj 0yszJZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCA BCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVs BoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTGZlCIPoIEJCABCUhA AhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAEJCABCUhAAtMjoDI2 vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj0yszJZaABCQgAQlI QAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCABCQgAQlIYAYEVMZm UIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVsBoXoI0hAAhKQgAQk IAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBA6fwTPs6hH27NnTGf/AgQOdfn08Iu3dpkNe 60yrj+xlmHXmv860gs06GJfPrF0CUyKw7nY1pWefqqxDltmQeU21PJRbAkMTGLJdDpnX0Bynnt/W KmNRKRcVYIRxor+I0rh+UUbjSmHuEpCABCQgAQlIQAISWJ3AVipj5QS+TdnKw3DfFmYZ7kOJ05Xm OtPqykN3CUhAAhKQgAQkIAEJSGA4Alv3zliuZKHgdCk5pV8eb7jiMScJSEACEpCABCQgAQlIYK4E tnJnjMLsUsLKgiZclyIW7mWYSDv3L9MNv3BfFifCRzjilW5hL9MMe3ktw+Ofp1+GX9Vept837TJe m1xlmNxe5pP7xTOUYcLdqwRqJ1DW5751uYzHc5ZxI0zpHkzwX+SXp1mmFfZIqysd/MuwhxqnK49I P/zDTj7hxn3uXvphDxPhIm7Ywz/cw973WqZDvGVplXGWhe8ri+Ek0EYg6hv1LO4JV9a73C/SKcOE O9e28LivGqcrfKQf/mEv88jdSz/sYSJcW3qECfcI3/ca6ebhl6VVxlkWPk/b+3EIbNXOWFlBV0Xe Fb/LvSv9tvBtbl3x29zb4re5ERf3RX5t6a/q1pb+onw3Idei/NrkW/UZDS+BoQm01dtF9Tzka4uH X5d7xMuvETauud+y+7Y4bW6k0+Xe5Uf4rjhd7iFvW9yIE9cI25V/7t8Vpi2tMl5p74rT5b4o70Vx yny1S+BQCCyqY11+q7ojV1sc3Nrcu8Lnz9cWN9KKaxk+t7fdH2q8Mq22dAjT5d7lR/hFccp8tQ9P YCt3xlZdJSD8sorcN808nTzObhpLpFmmFw2zzR2/3D3CxrX0w72vCXkIn6eTu5dp5X55HMKFH9fw i2v4hT3SDXfsXX55ehHPqwRqJdBVp3P3Ntlz/7wthDvX3L0tjd24RT55HuFW5h3u5JeHxx5+eZxw 6xuecKXJ84n04trll7vn6R1qvDwN7iMd7vO8wp1r7t4nDmE0EtgkgbJOklfUWe5z/3Av63K4l+Gx h18eJ9z6hidcabrkIlyXX+6epxfy5P7hlsudx2m7jzj49U1rWZy2fHSrg8BW7YxtCnneUPrmUcYp 7X3TiXBl/NIe4eLa5t/mFuH7Xrs6A+L3Sb8tTJtbX3na4ra59U3PcBIYg8Chtqu+8SJctI2wl88a /qV7hO/yL91Le5lem3+bW8Rr82tzi/BxLcPk9vye8KU90iivZbjcHpzKOLk9whAvj0uY3B7hcM/v 8zBlHOwaCWyCQFnvyCPqJX6lf26PcLlcuX+4t7kt8lsUviteHie/J3xpjzTKaxkut7c9axk/whAv j0u43B7hcM/v8zBlHOya+giojA1YJtFYyoYSInS5h3/XdZV4hF0lfFeey9y78ljk3uW3LK82f9Ja Z3pteegmgaEJdNXpLveQr8u/yz3ixTX6ri57uLdd++aRxy3zCz/SytMr7RFurGsuWy5Dl3sepu/9 orS6/Lrc++ZpOAlsgsCiemkf0E18Ebcuvy737lz0GZLAVh5THBLwFPLq6vTGln3dcq07vbH5mL8E 5kaACUO007jGM/adTJTxIv7UrnN5jqlxV971E1ilLtsH3M1/FW53x/JuigRUxqZYamuQudZGvm65 1p3eGtCbhASqJhCTIdpO3CNwKEPh1uW/24eL9Mt0oi2HHLl/+OVu3ktAAtMkYB8wzXJT6kMnsJXK WEwi+mKb20BfPk8+uSn9+jJaR7gy793Kte701vGMpiEBCSwnsKjt064X+S/yW55zPSHy56hHKiWR wOoEDqUu53HKsdw+YPUyMEbdBLZKGaNxl416leLJO4dV4tUUNp6/tmdZt1zrTq+mMlQWCWwTgbyv inYdzx/2PEz4eZWABOZBIG/f0ebjycKehwk/rxKYCoGt/YBHNOBlBdU33LJ08I/OoivNLvc+adcS ZhuesRbWyrE9BHbbrrr6li73yC8Ir2qPeKtekadLplXTGiN8l+zhXnJcJGPEaQuDX+4f6eZuebwu 9zyM9xLYFIFF9Q+/3L+0b0qmTaWbP0ueR7hHW839uu4jTpt/ySnS7YrT5d6Wtm7DE9g6ZSwqLKjL ypzjL/3yeHm4Q70vG0ZpP9R0+8Yr8yuft286i8K15bEoPH5tcUq3ZWnk/mVc7KVbHt57CdROoKy/ pT2XP++3ynC5PQ+Xx8/D5O5xv8w/wq16bUu3zS3SLf2wl24RdtPXMt/Sviz/vCzKuNjDLQ+Xpxn+ 4Vbaw92rBDZNIK+jZT3EHm55uJAp/MLOtc0t/Es/7KVbhN30tcy3tC/LP+dRxsUebnm4PM3wD7fS Hu5e6yGwVccUAzsVOK+c+X2Eya9dFT4P0/c+z7vMN/frm96q4fI8yvxXTasr/KI8cr88fu5+KHLl cUhrt+nlsnkvgRoILKrTuV8pa+6Xt5MIh38tZpmsyJnL2yf8kM8W8uyWc6SD7H3TWhQn9xuSh3lJ IK97ferysvAQJUyYPuEj7BDXkKfPsy6SJ9IhTN+0FsXJ/Rblq984BLZuZywwUzH5W2T6hFkUv8uv Ld82t674u3VvyyueNfzaGv8q+UY6eZw2t2X+y+RalGab37L0cnm8l0BtBLrq9DI52+IRp8s99+sK E+5xXSZDX/9F6bX5dbnhHn677c/6yp5zy+OEHLnbsvuuOF3u68x7mWz6S2AVAl11dlV38myL0+WG e/jZB6xSYoYdmsCenYq6WCMZWqItzy86DItlyyuCjy8BCUyGgP32ZIpKQSWwEQL2ARvBujWJbu3O 2BglTGONBjtG/uYpAQlIQAISkIAEJCABCdRDQGVshLJoU8hyRc1dsREKxSwlIAEJSEACEpCABCQw MIGt/IDHwIwPZoeSFYpYXA96eiMBCUhAAhKQgAQkIAEJbBUBd8YGLu5Fu174LfIfWFSzk4AEJCAB CUhAAhKQgAQ2SMAPeGwQrklLQAISkIAEJCABCUhAAhLoIuDOWBcZ3SUgAQlIQAISkIAEJCABCWyQ gMrYBuGatAQkIAEJSEACEpCABCQggS4CKmNdZHSXgAQkIAEJSEACEpCABCSwQQIqYxuEa9ISkIAE JCABCUhAAhKQgAS6CKiMdZHRXQISkIAEJCABCUhAAhKQwAYJqIxtEK5JS0ACEpCABCQgAQlIQAIS 6CKgMtZFRncJSEACEpCABCQgAQlIQAIbJKAytkG4Ji0BCUhAAhKQgAQkIAEJSKCLgMpYFxndJSAB CUhAAhKQgAQkIAEJbJCAytgG4Zq0BCQgAQlIQAISkIAEJCCBLgIqY11kdJeABCQgAQlIQAISkIAE JLBBAipjG4Rr0hKQgAQkIAEJSEACEpCABLoIqIx1kdFdAhKQgAQkIAEJSEACEpDABgn8P8GAOhQY uNG5AAAAAElFTkSuQmCC --001a11c2e90c6251da0500a80a0b--


This message came from the mail archive
http://www.auditory.org/postings/2014/
maintained by:
DAn Ellis <dpwe@ee.columbia.edu>
Electrical Engineering Dept., Columbia University