Subject: Re: data resampling From: "Alexander Lindau, Dr. rer. nat." <alexander.lindau@xxxxxxxx> Date: Thu, 14 Aug 2014 09:18:45 +0200 List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>This is a multi-part message in MIME format. --------------010706000006060000020906 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Dear Juan Wu 'downsample' does not take care of aliasing, you would have to apply an anti-aliasing filter yourself beforehand, to make it work properly. 'resample' should be just fine (for integer resampling factors you could also use 'decimate'). Greetings Alex Am 14.08.2014 01:05, schrieb Juan Wu: > List experts, > > I am attempting to down sample my data from 300 Hz to 1 Hz. I just > tried two functions of Matlab: 1) a = resample(Data,1,300); 2) b = > downsample(Data,300). The results are quite different between each > others. > > Inline image 2 > > Apparently, the result from "downsampled" is close to the the original > data. However, quite a few persons suggested using the re-sampling > method - I get this information from google searching, and very agree > with this view. Personally I think the downsample method is too simple > and very arbitrary. I also do not believe the "Nearest Neighbor" > method. I assume that the method resampling takes both "FIR > interpolator and decimator" implementation - this is what I expected. > Am I right? But now my output from the re-sampling method is really > very terrible. So I assume that the resample function from Matlab does > not do a good job for this. I am not sure whether I need change to use > other softwares or try other functions in the Matlab. > > Any opinions or references are much appreciated. > J /*------------------------------------------------------------------------- Dr. rer. nat. Alexander Lindau <http://www.ak.tu-berlin.de/alindau> Research associate SEACEN research unit <http://www.seacen.tu-berlin.de> TU Berlin - Audio Communication Group <http://www.ak.tu-berlin.de/> Einsteinufer 17c D-10587 Berlin Germany office: EN 150/151 phone: +49 30 314 787 80 fax: +49 30 314 211 43 mobile: +49 176 7876 1976 ------------------------------------------------------------------------*/ --------------010706000006060000020906 Content-Type: multipart/related; boundary="------------070307070605000902040905" --------------070307070605000902040905 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable <html> <head> <meta content=3D"text/html; charset=3DUTF-8" http-equiv=3D"Content-Ty= pe"> </head> <body text=3D"#000000" bgcolor=3D"#FFFFFF"> <div class=3D"moz-cite-prefix">Dear Juan Wu<br> <br> 'downsample' does not take care of aliasing, you would have to apply an anti-aliasing filter yourself beforehand, to make it work properly. <br> 'resample' should be just fine (for integer resampling factors you could also use 'decimate').<br> <br> Greetings<br> Alex<br> <br> Am 14.08.2014 01:05, schrieb Juan Wu:<br> </div> <blockquote cite=3D"mid:14570_1407989810_53EC3832_14570_224_1_CAKeKpMNpFy3bS3hLyox-Q=3D= hOA0z=3DBAq6h_35Lm2fFYVnhBV2Xw@xxxxxxxx" type=3D"cite"> <div dir=3D"ltr">List experts,<br> <br> I am attempting to down sample my data from 300 Hz to 1 Hz. I just tried two functions of Matlab: 1) a =3D resample(Data,1,300)= ; 2) b =3D downsample(Data,300). The results are quite different between each others. <br> <br> <img src=3D"cid:part1.08000101.08010804@xxxxxxxx" alt=3D"Inli= ne image 2" width=3D"562" height=3D"189"><br> <br> Apparently, the result from "downsampled" is close to the the original data. However, quite a few persons suggested using the re-sampling method - I get this information from google searching, and very agree with this view. Personally I think the downsample method is too simple and very arbitrary. I also do not believe the "Nearest Neighbor" method. I assume that the method resampling takes both "FIR interpolator and decimator" implementation - this is what I expected. Am I right? =C2=A0But n= ow my output from the re-sampling method is really very terrible. So I assume that the resample function from Matlab does not do a good job for this. I am not sure whether I need change to use other softwares or try other functions in the Matlab.=C2=A0<br> <br> Any opinions or references are much appreciated.<br> J<br> </div> </blockquote> <br> <br> <div class=3D"moz-signature"><br> /*-----------------------------------------------------------------------= -- <br> <a href=3D"http://www.ak.tu-berlin.de/alindau">Dr. rer. nat. Alexander Lindau</a> <br> <br> Research associate <br> <a href=3D"http://www.seacen.tu-berlin.de">SEACEN research unit</a> <br> <br> <a href=3D"http://www.ak.tu-berlin.de/">TU Berlin - Audio Communication Group</a> <br> Einsteinufer 17c <br> D-10587 Berlin <br> Germany <br> <br> office: EN 150/151 <br> phone: +49 30 314 787 80 <br> fax: +49 30 314 211 43 <br> mobile: +49 176 7876 1976 <br> ------------------------------------------------------------------------*= / </div> </body> </html> --------------070307070605000902040905 Content-Type: image/png Content-Transfer-Encoding: base64 Content-ID: <part1.08000101.08010804@xxxxxxxx> iVBORw0KGgoAAAANSUhEUgAAA2MAAAEjCAYAAAC/9tlMAAAgAElEQVR4AeydB6BdVZnvF0kg FQihhR6KtFBDDy2gtKggo4CKMgHBpw8Vx3m+ZxlHZtSnDpYR9aFSjAiIgKCAQgiahCaEGjGA oV1qaCEkQBqEvO+3d757d05OvWfvffY55//ByTl3l1X+a61vfW2ttcZzTz++4o3XF4ZX5s0L b7y5KAxYY0AQCQEhIATSQGDFihVhwMABYeMNR4Vd9tg/jSSVhhAQAkIgFwSeePThMGLkBmGN XHJTJkJACHQTAvCVl+Y+Fb7zvXPDIISlNQYMDOusOyqMXH/TsMYaYjvd1BlUVyGQJQIrgvEX y+CdZQuzzEZpCwEhIARSR2DhwoXhpVcXShlLHVklKASEwMABA8KQNU1GMr1rUMxlVoRly5aa wLRc6AgBISAEUkUAZWzImuWTnD3rrrD07UGmsomEgBAQAukiAO8ZPOjtMHb3/fqV8AATlgYN GiBlrF/o6SUhIASqIYAyFsJb0SOD/EE0M/4TCQEhIATSREBcJU00lZYQEAJCQAgIASHQSQho gVgntabqIgSEgBAQAkJACAgBISAEhEDbICBlrG2aSgUVAkJACAgBISAEhIAQEAJCoJMQkDLW Sa2puggBISAEhIAQEAJCQAgIASHQNghIGWubplJBhYAQEAJCQAgIASEgBISAEOgkBKSMdVJr qi5CQAgIASEgBISAEBACQkAItA0CUsbapqlUUCEgBISAEBACQkAICAEhIAQ6CQEpY53UmqqL EBACQkAICAEhIASEgBAQAm2DgJSxtmkqFVQICAEhIASEgBAQAkJACAiBTkJAylgntabqIgSE gBAQAkJACHQMAgMGSEzrmMZURYRABQRaMsorMZdK1yuUXZeFgBAQAkJACAgBIdCRCAwaNCiq 14oVKzqyfqqUEBACMQK5K2POXN55551V2gBFbI011gil11d5SH8IASEgBJpAYNiwYRGfKU2i 0vXS5/S3EBACQiAPBJCJXnnllfCtb30rLFiwIMhYnQfqykMItAaB2OySU94wk3nz5oXzzjsv fPKTnwwbbLBBr/KF5efrX/96+NznPhfWX3/93us5FU3ZCAEh0OEIYAi68cYbw9577x2GDx8e 3No8cODAcPPNN4fdd989jBgxovd6h8Oh6gkBIVBQBOBVyEsvv/xy4Pfbb78dlRSeNXTo0Oia 86+CViEqFrwVA3s7lBVnAJgvX768yJD2lk3Y9kKR+g/6wRtvvJFrv81NGUsyFzqRMxdQHDx4 cLjrrrtCT09Pb+UZGAhGRfGUFW2gFq08tGPRmIPKQ6tUJvoQ43Dx4sVlvUWV32y/O/CfWbNm hWuuuSaMHTu2V+ni+vPPPx/OOeeccNFFF0U4IDistdZa7VdJlVgItBECCL3tIvjmCSsyzzPP PBPxqL322ivcf//9vXLRmmuuGe68887w6KOPtgXPfuuttyLFkbmm6ATfZz4E43YgYZtdK9Ff 3//+90e6SV6GhFyUsSRz2XPPPcMDDzzQy1yAE2HwySefDBMnTowYDEBw7Xe/+90qz6UNvemE puwFy6N2yjQIEwfCWxGoaOUBExgZClBRGK/KU72n0oe23377MG7cuFWMI9Xfaq+79EUsyfSF HXbYIey///6rGHiwgM2cOTMcdthhq/TbJ554IrKMFb22jDcUR/hlOxDhoEuXLm0LIVzYZtej wHazzTZbxUOdXW7tkzL8CiF72rRpYddddw2jR48Oy5Yt660AuKGcnXDCCWGjjTbqvV7UH0RB IddtsskmRS1ib7lQgImcOOWUU3qvFfmHsM2udX7+85+HV199NWy66aaZ6iDJGmSuWcBcEISm T58edt5552hQwlwQBLlHuNDUqVMjqzXPbbHFFtEzAIGAccYZZyTLm+pv43mmXAUrR+1kn3vu uXD99deHU089tfbDOTxRtPJQZTrw+973vmiSzQGCmlmoPNUheuGFFyJP0b777tuRyhj8ZcmS JeHSSy+NBJvx48f3KgHcwyOPt+zxxx+PfhNCjYDD2Lrqqqsixa06gq2/O3/+/PDQQw+FAw88 sPWFqaME1113Xdhtt93CuuuuW8fTrX1E2GaH/2uvvRYpFR//+Mcj5Ty7nNorZeSiIUOGhNNP Pz1SylDMMLbAryDuEzHEGFpvvfUKXzlkPsK/WXpSdBo1alR4+umnw0477VT0okblE7bZNdOY MWOyS7xCypkrYzAPhJ5PfOITEXNBEYO5YOF58803w5w5cyJBaZtttglXX331KuvIACTLgXHJ JcGsNiHYGKxJrG/DWp5leWoWIvFA0cpD0Zw5bLjhhomStu6nylMdexSPm266KTfLT/XSpH8X 3kPICV4vBBiMPXhluI6Qs3DhwugaFvrbbrst4LXHU4YCh+L26U9/Ov1CpZwiC/wvu+yycOaZ Z6accjbJgS2CZjsoY8I2mz5AqmxI8e1vfzu7DNo4ZfjTokWLohqghHm4lC/Z4D58rB0IZRvl sh0ImeqjH/1oOxQ1KqOwza6pkBXypsyVMSpUylzwnqCQwVywmGDhYSDgBUN4ciD8OytQXnwx WChSfcoYVpOTTz45q6I0nG7RykMFwKdIjFflqd6tXDGp/lR730W5wtsOr8EQRJji2muvHSlc rBXDK3jIIYdEoZo8h5KGAJSlsMP6cGQpi9hrmuCjBx10UNPp5JXAoYceGhni8sqvmXyEbTPo VX8XQ4h7e6o/2d13kZ187Ty/242IfGoXwkFAGHW7kLBtl5aqr5y5KGPJosBQ6EQIR3R+lDGU Lj4I8m79Sb6T1W/Lvm6BiLIWqfMXrTy0UZHwUXmyGjXtl64bdeA9e+yxR6Rw8RvPKRZoPPR4 vFHE8iCLggxTpgQzPjWf2zrrrBMpks2nlE8K7GTZLiRs26WlOruc2uSks9tXtRMCIJD7OWNk CnNBGOKTZDR+nWfyIDMq285EsXcsj/yUhxAQAq1DwD1eGHzgPa58Ja/nUTrLOrz0Urx5UB75 KQ8hIASEgBAQAkKguAi0RBkrChxs3mF7cgRbSywSAkJACOSCAEsoLr442Jq1XLJTJkJACAgB ISAEhECBEehqZWzu3BCuuKL+UMUCt6OKJgSEQBshwE70tjRNJASEgBAQAkJACHQ5Al2tjLFh Cl4xCUVdPgpUfSGQIwKEKdpSL1urlmOmykoICAEhIASEgBAoJAJdrYyhhBXkDOdCdg4VSggI gfQRwAh0xBHxJh7pp64UhYAQEAJCQAgIgXZCoKuVsaFD2Xa/nZpLZRUCQqDdEWDjINtDxHaQ bfeaqPxCQAgIASEgBIRAswh0rTLGOT+33x7sXDPbUrJrUWi2++h9ISAEGkXgnntC2Gsv7abY KG56XggIASEgBIRAJyLQtWoI6zWmTmWb/WBbXHdi06pOQkAIFBGBhx4KYexYecaK2DYqkxAQ AkJACAiBvBHoWmVsyZIQvvzlEPbbL4Tzz88bduUnBIRAtyIweHAIeOa1cVC39gDVWwgIASEg BIRAHwJ20lZ3Eus1ttsuDhVii3uREBACQkAICAEhIARahQAH0HMgvdMAW0PBh4Pq+YiEgBDo TAS61jOGVZpQxd13D2H99TuzcVUrISAEhIAQEAJCoPgIDDaXeVLhGjhwYFhiITzPP/+8LaV4 K/C3SAgIgc5EoGs9YzTnsmUhHH10MGbXmY2rWgkBIVBMBGTkLma7qFRCoBUIoGj96U9/CvPn zw8nn3yyySbLIkXsuuuui36vaTuNHXfccWHEiBFR8bTpWCtaSXkKgewQ6FrPGJDiHVu8WLua Zde9lLIQEAKlCBCFxLoxvtlASCQEhEB3IkAIIorWokWLIkVsqS0mJVQRIlzxyCOPDGeddVZ0 /5VXXonucX3gQDuXRyQEhEAmCAwZMmSVcOFMMilJtKuVsRIs9KcQEAJCIHMEUMC22SZWxF58 MfPslIEQEAIFRACl6/XXXw9zbdH6sGHDwuGHHx4GDRoUCYEoXIQtbrjhhuGpp56Kro8cOdKU sBXh5ZfXCmeeOSNcfPEvI69ZAaumIgmBtkOAkOBf/epXtqHf+eGvf/1rWIsDQXMkKWM5gq2s hIAQEAIg4GFGeMdEQkAIdB8CKF7/+Mc/wo033hgpVYQm+uYdCIKELr5pC9tvueWWcMIJJ4R1 1lknur9kyXITFDcLu+22u9aRdV+3UY0zQoDxuNtuu4U999wzjB492qJW8g1bacmasdIdg8DW F6fmDUBG7apkhYAQEAIVEZASVhEa3RACXYEAm3LsZ2frjB8/PtqgA0WMsEVkob///e9h4403 Dj/60Y9sg7H1w4wZM8Khhx4aRo4cYQrZO2HrrceEPfbQzmNd0VFUyVwQQBlDEYNuv/32VTbT yaMAuStjMBoYDlYgj43GCvTiyngd3PLJHYXyAEF5CAEh0B0IEA602BaKugUaBsyaDQjhyK93 BxqqpRAQAq1EAJ7DB9poo43Ce9/73mjjjjgkcWA46aSTIgs9MhFyk/Ont9+O32ll2ZW3EMgL gb/9LYRttw1h+PB8cvQxmU9ucS65KmMoXwsXLgw///nPw6mnnhpZfGAw999/f7j77rsjZrPP PvvYdvO237xICAgBIZAiAhiCfv/734cDDzww2pUMfoQR6IYbboiEnCOOOCJsscUWKeaopISA EBAC9SGAYYhQxLftEFQ3Su+88869m3awuYdICHQjAtdfH8LHP56fMtYKjHNTxtwj9uyzzwaY imueXEcZwyI0dGi8QxChiliA2NFEJASEQDYIrLvuur3e6WxyKE6qCDoPPPBAmDJlSthrr73C 2muvHXnEbrrppnDwwQdHf2Mo8hBq95YVpwYqiRDoHASY6z0ypnNq1VxNkHmQfcDFl2tIAWsO U73dGQigGpjfpqMpF2UMJvPyyy9HyhWC0IMPPtjrbnfh56qrroqUsQMOOCCMGjUqEpTuuOOO aEeTcePGBT5pE+vz1lsvTtU2NAqbbJJ2DkpPCBQPgfvuuy/wWbBgQRQS08lCEXVjVzKszbvs sku0RsPDoF3oueuuuyJ+hEGIeyhuTz75ZJg5c2bYfPPNw6abbpp6IxpLFAmBrkMAYyyHGOOR ZkyKhIAQEAJCwJTNrEFA4GF92B//+McwZ86cKDu8Yiho3GO9GNafD3zgA+aG/Hi49dZbI0UM oYgFrOxuwndWZI65lWXKKgelKwSKhYCPqx133LF345xilTCd0sBf2K6WrWrvvffeyPvlAiD3 ULo432fLLbeMlLRrr7024keETiMs/s0C1V966aV0CrMyFeRPy9pwTzVZJSYE2gKBF154IRpX jzzySK8XqC0KrkIKASEgBDJEIHPPGEoXlukzzjgjsoShmCHs8EEQ6unpCbvuumu0ewmC0k47 7dS7YHXMmDFh3333zbD6fUkjIImEQDcgsNlmmwU+8+fPD7fddluvl7rT6g7vwdgzceLE6Bwf jEAYfrgOH8IzyBa2hCRirR++cnUw91hXdvrpp6cOyXPPxYqYHRlkfC715JWgECg0AnvvvXfg w9j77ne/27G8p9CNoMIJASFQOAQyV8a8xlioISzSvj4M7xe7mx100EFR6CL3CSVCGIJ8XVn0 R8r/mIxm+aScqJITAm2EQHJXwTYqdkNFhd+wSxm8Bn7C+jAWycNjCJ1GUeOcH5475phjouv8 dn7VUGZ1PGx6oEgIdD0CrM/EKCISAkJACAiBEHJTxhxsGDDbtvoCVQQlhKQ99tgjegTLNcJQ 1kTE5PbbZ52L0hcCQqDVCDivwfM+duzYXmPP9sYAuPeRj3wkKiIHrGYtIObA2loNt/IXAkJA CAgBISAEGkAgd2WMsvm6DX67oJS0ROehjN15ZwinnEIJREJACHQDAvCV5O5k7nl//fXXe6vP 7q4iISAEhIAQEAJCQAjkhUDmG3jkVZFG81GYYqOI6XkhIASEgBAQAkJACAgBISAE0kSga5Wx NEFUWkJACAiBRhFgAw854hpFTc8LASEgBISAEOgsBKSMdVZ7qjZCQAi0CQJ25rbtKtcmhVUx hYAQEAJCQAgIgUwQkDKWCaxKVAgIASFQHYEjjwzhppuqP6O7QkAIdA8CldbLV7rePciopkKg sxGQMtbZ7avaCQEhUFAE2FlRu3sXtHFULCGQMwKcx1pK7O5a7nrpc/pbCAiB9kZAylh7t59K LwSEQJsigCKmre7btPFUbCGQIgLs4jp16tRw9dVXr6J8DR06NMyYMSNceeWVq1xPMWslJQSE QAEQaMnW9gWot4ogBISAEBACQkAICIGWIUD4IYoYZxw+//zz0bE/HpLIN8cATZkyJYwePToM GIDtfHl0FuKQIUNbVmZlLAQ6HYEhQ4ZkfuZoKYbyjJUior+FgBAQAkJACAgBIZAhAihbixcv DvPmzQvDhg0LR9oi0rXszB0/eH7NNdcMs2bNCuPGjQtbbrnlKtdnzrwtXH75Jb0H2GdYTCUt BLoCAc4gveyyy8LkyZPDzJkzA+MvT5IythJthQvl2e2UlxAQAkJACAiB7kVg0KBBYfbs2eHa a6+NlKply5aFd955JwKEdWL8/Zvf/Ca88MIL4Z577glLliyxsOY1IqVs1KgNwtZbb7vSW9a9 GKrmQiAtBPBQb7PNNuFd73pXWG+99XqNH2mlXysdhSnWQkj3hYAQEAJCQAgIASGQIgJvvfVW 2HfffcMBBxwQltuhg+4RQyhESdtwww3DqaeeGp5++umwaNGiKJyRZwhdRGDcb79RKZZGSQmB 7kYA48j+++8fgYDxg3GWJ0kZM7RffDGEX/86hC9/OU/olZcQEAJCQAgIASHQrQighPGBUL4m TpwYCJcaPnx4YN3KLrvsEnbYYQdTvPbrVdbwjr311rJuhUz1FgKZI4ChhHGWJ0kZM7Q5ePWN N/KEXXkJASEgBISAEBACQiBGgDUqo0aNMkXrrbDppptGShpryhAK11lnndwt9WoXISAE8kNA a8YMa1sfazGi+YGunISAEBACQkAICAEh4Ah4CCLKFyFSHrbo1/25PL4feSRYaGQeOSkPISAE QEDKmIFw7LEhbLCBOoQQEAJCQAgIASEgBLobgWuuCeHVV7sbA9VeCOSJgJQxQ9s2KbJdjPKE XXkJASHQ7QiI53R7D1D9hUDxELCd9u3w6WDb7RevbCqREOhUBFqijLFta3yAYQwrv0eMGBF9 ktc7FXTVSwgIgdYgwI5JyYW5/B46dGj0SV7Po3QbbWRHuNra/fnz88hNeQgBISAEaiOAcXrs 2BD+/Ofaz+oJISAE0kEgd2UMReyhhx6KtmpF+OHDeRpXmymGD7/zFoqA0oohEgJCoIMR4EDV 1157LVog79XE+HPXXXdFhzzmbQiyDdNsXYg2D/K20LcQEALFQGDjjYMdRl2MsqgUQqAbEMhV GeP8DBSxc889N7z++uuR0oWAdN1114WRI0dGH36jsEGtUMq6odFVRyEAAnkrH61EHd7z5JNP hm984xsR76Hu8J6bbropOsenp6fHLMF/DuxoljdZUURCQAgIgUIgcPPNIUyYEBuKClEgFUII dAECuYgBKFVrr712JOhsYDtl7LPPPr0nzXPiPIrYyy+/HH34zTXeYVtXLNmcPJ8lmUwWLrgg WF5Z5qK0hUAxEGA8Ma74+I5dxShZ+qWAjxCGSHgidd166617z/UhNw5THT16dNjYTMH8dgMQ yptICAiBbBBohdEjm5p0Xqps3GFiWOS177zaqUZCoJgIZH7OGMINoYdXXHFF2HbbbSNFLMmI sVBzH2UNQlDkHYQnTsE+77zzwsEHHxwOOuigzBBkoSrrNzLW+TIrvxIWAo0gwLi69dZbIw8R B4y6AtJIGu3wLPXizJ577703bLLJJrYOYmy47bbbVlFAOb/nqaeeiq6hlKGw4TGbNm2anT34 Rjj00EPD+PHj26G6KqMQKDwCM2bMCHfccYed7bmgZUsSCg9SiwuIHQpxjBBqs4ebMavFBVL2 QqALEMhcGUO4QSjayLQdNulAOEIAxPvFPf5+6aWXwhFHHBHBTdiQC1EIQmeddVZmzeC7mcF4 Tjgh2OSQWVZKWAgUBgEMG3zwRn//+9+PxmFhCpdyQeAxL774YmTs4eweDD/Ok/B+zZkzJ0ya NCniQ5dffnk46qijot/77rtv+NSnPhWGDBmScomUnBDoXgT222+/sPvuu4fnnnsu/PrXv+5o 3tOurcymQltsEW8u9Mor8e92rYvKLQTaBYHMlTGAwBOG8OfC0HbbbReG2+r1N998M1qvMXHi xHD99ddHmB199NGRMMQfy+EKGZAfZmi6YS/hFTOdUSQEugYBDCGdTChdeLlOPPHEyACEIkaY NNdYs/rss8+Gww8/PFx88cURDBh/wIT3CG0kZFokBIRAeghg3ODD3N+pHvn00GpdSi56aT1r 69pAOXcXArkoYwg3rP+C+D3BVoeimOEd22mnnQIW6tNPP70Xee5lSeYQiGj99ftygenICN6H h34JgU5AAH6D4uX03ve+N+JB8B7Wj2EUIoQRwXDdddftNQDxnkgICIFsEGD8iVZFADmITzJ0 nM3MMB5hSOI6JNa0Km76Swh0AgK5bOCRBAqhB8bizBihB+ULi7R/sraYlbP2mKEuPPhgsqT6 LQSEQKci4LspwosIn0Yp43fWZEthjd9lnYvSFwJCoJ0QQAnDW/joo49GChllZ9387Nmzw5VX XhlmzZoV7X6Lx8psSNH5hIQQioSAEOgMBHJXxooKG96ya64paulULiEgBNJAIOnx8t8Yhtw4 lEYe1dJAgEp65Ks9q3tCQAh0PgIYnzFEX3LJJWHq1KmRJwxjEWvp2XCI6CHW97Lbqy2mCGw4 xreHEnY+QqqhEMjXI5y1Q6hce0oZW4mKwhTLdQ9dEwJCIE0EOMNn5V5FaSartISAEGgzBDAG EYaIZ57fbBpEqDS/EQY9LHHu3LlRSLU/t3z5iujem28uip5ts2qruEKgIQSs+5u3ONjxMw29 1vDDjDt2UGZZQzJUuOGE+vmClLGVwLGBh8LY+9mL9JoQEAJ1IWAy1iprPthDpQXnTNdVVj0k BIRAdggQhvigrY24+uqro9DETTfdtNdDjzLGfXZ7RWFjl+l58+ZFzyEw3nffneHSSy+z0Op4 HVlapXTB1078kDyUFqhKpykEfHO9rOdJjtX6xS9+EX784x+Hu+++O9p4sKmCN/iylLGVgO2y S7B1Iw2ip8eFgBAQAg0gUKqMcXyiRSKJhIAQ6EIEhlnM4XrrrRfVnDWrfDxskdDFnXfeOUyY MCFaL4awiPWeM1nHj59gR2+cbopaukdvuODL2lbLSiQEWo4AUWt5EDsof+ELXwhf+cpXorON 81hDnqxXTtVMZlnM38cfH8KGGxazbCqVEBACnYkAi/GffLIz66ZaCQEhUBkBNi5jR9dDDjkk 8nghDG6zzTbRCw8//HAUsoi37Nxzzw1bbbWVhWlt3Os5Y41rFmvG8hJ8K6OiO0Kg9QjktYY8 WVOzf4hAgF1jFaaoviAEhECeCLCBo+1cLRICQqDLEEh6wKj6+razz2GHHRYdAzR27NgIDc5d RWkjZBFPWZ4k3pQn2sqr2xGQZ6zbe4DqLwSEgBAQAkJACLQUAazxHqZIOCIf/vbr/J0njRkT Qk9PnjkqLyHQvQhIGevetlfNhYAQEAJCQAgIASGwGgIHHxzCrbeudlkXhIAQyAABKWMZgKok hYAQEAJCQAgIASHQrghop9d2bTmVux0RkDLWjq2mMgsBISAEhIAQEAJCQAgIASHQ9ghIGWv7 JlQFhIAQEAJCQAgIASEgBISAEGhHBKSMtWOrqcxCQAgIASEgBISAEBACQkAItD0CUsbavglV ASEgBISAEBACQkAICAEhIATaEQEpY+3YaiqzEBACQkAICAEhIASEgBAQAm2PgJSxtm9CVUAI CAEhIASEgBAQAkJACAiBdkSgMMoYp9HzEQkBISAEhIAQEAJCQAgIASEgBLoBgUIoY2uuuWZ0 0jynzfNbJASEgBDIAwH4zYABA6JPK3jPO+/kUUvlIQSEgBCojQDil4lhIiEgBHJGYFDO+a2W 3cCBA8PDDz8cpk+fHnnGDj/88LDDDjus9pwuCAEhIATSRADeM2fOnPCXv/wlUsaOPvrosOWW W6aZRc20Ro8OYfnyEObNC2H99Ws+rgeEgBDoIgSS0UIrVqzIvOZPPx2MB8bZyFCUOdzKQAj0 ItBSz5gzmuHDh4dJkyaFD3zgA2HatGmRdwzGM2TIkN6C6ocQEALpIrDOOut0fWgwCtmHP/zh cMQRR4SpU6eGtdZaK8B7Bg8enC7YFVIbOjRYfiEsWlThAV0WAh2IwIgRI7qe95Q2Kzxn0KA+ +7h77JcsWdLrvS99J+2/b7klhEMPjVM1sSziTZa9SAgIgYwR6Bv5GWdULvm3337brMLLwxZb bBEJPw899FDYfPPNwztmkiFk6L777gtXXXVV2HnnnaNPuTTSvKYla2miqbSKigDjjM/8+fPD 0qVLu1Yogvdsu+22Ee/p6ekJG2ywQS/vefDBB8MNN9wQtt9+++iZrNvSIiVFQqDjEcAT/fjj j4eXX345vPXWW13Le0obGiXsjjvuCC+++GJklAYbPvAg+PT65jbHc591KDVhipZtRBttFHvt ralMRistsf4WAkIgTQRaJgLAVGbNmhUuvfTSSACCSS9YsCAcd9xxkYCIdRorNV4zvvMgM5KL hEDHI+Djaqi5Zdw73fGVTlQQ3nPPPfeEyZMnR7znscceCy+99FIkBLFuFUIQevPNN6PvxKv6 KQSEQBMI+LhavHhx5IFuIqmOeBX+i3ceXjN79uxISXWPGDzptddeC2eccUZ0fZ7FMvM89wcP HhLWXjsfCGQoygdn5VIcBIjKyyMsOFnjliljMOVx48ZFjAYr9E9+8pOAp+yRRx6JmBO/x44d G4455piw3XbbJcucyW+ikn7zm2AKYSbJK80V2dkAACAASURBVFEhUBgEGE+Mq2OPPbY3LK8w hcuhIPCePffcM5xyyimRAPTTn/40wgHvGIIO9/faa6/woQ99KOy44445lEhZCIHuQIA5nXFF aLCHBHdHzcvXEjmHMEQMYxMnToy+EQL5rLfeepFMdNFFF0VKGGHlEIrb3/52b/jd76Yar9Ju G+WR1VUh0BgCGGL/8Ic/RNF4999/f+Ze6NLStUwZ84LAdNY2E8/xxx8frRFDGIKwABFClReR 7VNPpbeT0KuvhnDllXmVXvkIgcYReOONN3K3/jReymzeICzI12i8+93vjnZz9ZBNeA8CUjvS 738fbwbSjmVXmbsHgYULF3Yt7/FWxkOP0HfZZZdFBiAUM5ZoQPCmV02IQEn74he/GK0lw0sG b+IzaNCakbzEb5EQEALpIMB448PYzNsz1tI1Y8AHA2Ldxk477RShiXbKtVYQ0ZBp8bZf/jJY iEEIJ5zQipooTyEgBKohAKOF17AeFS+Z/90q3lOtrI3cs41pzaunnRkbwUzPCoFWIIAHfu+9 944+hCqiiPHBIE3oNAIh4ZxXX311xKtYssH9oUOHmby0q3nS1jOlrBUlV55CoPMQwFN/5JFH RhV74oknctdDWj6UsezAlPg4uXfM/077m5DElQ643qRNNjNPXHrK2LPPhvDMM/FiWOOpIiEg BAqGALwHhYyPE0JROxORTGkZlNoZB5VdCLQLAvAhlCw2EGJXV2QhrvH3UUcdFW14wuYdI0eO jIxGK1a8YzxrabDAhmCbUmZKiGWSXzKFWIkXEAGPksmzaC1XxvKsrOdle4WstpU0CpptnGba sD/V3DeLa3/3uxBefz2EUaOaS0tvCwEhIARqIYBOSah1m+uTtaqp+0KgoxDwcChCEzfddNPI OLTVVltFlnm+WeOLgobRKK/NzBxg29w6YFhmZ0WREBAC2SHQ8jVj2VWtcsq//W3stUo+gUWZ kMK0lqlhncaiJCt1EmX9FgJCICsEWKcKb9PxjFkhrHSFQHYIoJS5V4xvD51mw46k9z67Eqye MmeOzZix+nVdEQJCIF0EutIztu66IWy88epAYllOS3lSLPfq+OqKEBACqyOQVigQvEtesdXx 1RUhIAT6hwCRQpJl+oed3hICjSDQlZ4xXO4nntgITI09S2gi2+QT+igSAkJACFRDYJNNQpg7 t9oT9d9Ly5hUf456UggIASEgBISAEGgGga5UxtisI7Fmvxn8yr6Lpds2Y5GVuiw6uigEhEAS gcMOC2HatOQV/RYCQkAICAEhIAS6BYGuVMayblys03jFbIMkkRAQAkKgKgLLl8twUxUg3RQC QkAICAEh0MEISBnLqHHxvqW1M2NGRVSyQkAItAABeENWpDUeWSGrdIWAEBACQkAIZIOAlLEM cMUjxgYhH/5werszZlBMJSkEhECOCLz4YuwB23DDbDJFEWP3M4U8ZoOvUhUCQkAICAEhkAUC UsYSqBJemMYBh1i+OVR6660VqpiAVz+FQFcjsGhRvFtrVhv7wHc22yyE557raphVeSEgBFJC QEstUgJSyQiBGghIGUsA9NJL8Tk9iUv9+gkD22abWCHLMiSpX4XTS0JACLQEAQw0WVNa2+Rn XU6lLwSEQPERYKdX1rS+8krxy6oSCoF2RqArzxmr1GALFoTAp1ni4Gi2zidsSJalZtHU+0Kg sxEQj+js9lXthEC7IsAB8hiUFy9u1xqo3EKgPRDIwVbbHkBQyu22C4EDodMgLNTyiqWBpNIQ Ap2NwLBhMa/AiNMMEWIN3xEJASHQ/gisMAFirbXWCiNGjIi+W1mjPLz6rayf8hYCrUZAylii BU46KQQOhE6L0lqDllZ5lI4QEALFQ4DNfggFevnl5sr2/PPxmjF52prDUW8LgSIgMGjQoPCP f/wj/PGPfww9PT2Bv0VCQAh0JgJSxhLtmqY3C0sSa9CuuCKRgX4KASEgBCoggPGmGZo+PYQJ E3SkRjMY6l0hUAQE1jBm8MYbb4SHHnooDB06NEyZMiXMnz8/cN0p8dMv6VsICIE2RUCmlowa DmVs4cIQXnghowyUrBAQAkIggQCGc51tmABEP4VAGyKAwjXMYpfxhB133HFhQzsL45FHHglv vvlm9JsqEcK4fLntFBZkT2/DJlaRC4rAOyvDShhfeVOuI9ljoIcPHx7FQHuFYT5c45O0/OQN BvinsbU95V6yJATCHjffPO9aKD8hIATKITDY9pQvXX9RFN5Trry6JgSEQHchAD9atmxZuPHG G8Njjz0WhtgOGrfeeqstn9go+oDG66+/Hu6885ZwwQUXhqVLTdAQCQEh0DQCi22Xmh/+8Ifh 29/+drj99ttzX6eZq2cMS8+jjz4annrqKdssY7uw5ZZbmnVnecR8qDyM6IADDmiZQsb5P5de GsLHPhbCOus017asAXnXu4I1anPp6G0hIASaR2DgwIFRyM8zzzxj4/JdYauttop4zxKzmsyY MSNw/8ADD2w+I6UgBISAEGgSASz08KRZs2aF2bNnRx6yARZuw3UMSvvtd1A47bSNw+DBuYpw TdZKrwuB4iJAOPDnPve5qIAoZRhF8qTcPGMoWrjZYSzsEHTTTTeFV1991TxRa0ZCEvHR8+bN C1OnTjUGY1pRC2jUqBD23DMOL2w2e6uuWa20o2KzOOr97BBgTHYDUU/4y5w5cyLvO7yH9Rfw HsJ/3rLFoq+99lrEe+BNULdg0w3trzoWDwGNr/Jt4tFD73vf+8IWW2wRLr/8clt7/lL0jeEI 3PgMHDjI+JcUsfIo6qoQ6B8CyAR8MITkTbmMZpiHx0C///3vj9zt55xzTiQgjRw5Muy2226B 77lz50ZMBwsQBGNKhjJmDY61Qdhll/TOBqMa7JD2pz+FMHFi1qVX+kKgPgR8THl8dH1vtedT 8B7Cn/HKH3vssWH99dcPDz/8cGQYWtfOsdh9990j3vP000+Hq6++OjjvedsWX2EZgym3gjG3 J9oqtRCojgCRMB4NU/3J7r0LfyYUke9/+7d/s3Wgb0e/4WHOu/m2/3Mh1qFa1iIh0DUI+DjL s8KZDzGEISzPWKM3twVUY8eOjeIxEYpGjx7dy2RgPtOmTQuHHXZY9Dza6W233WZrr5aEQw45 JBx88MG54II3y4qcCpHOokUhPP54KskpESGQCgKMq1tuuSWa8N3amkrCBUsE3oNCBV8ZM2ZM 2HXXXaOQxE022SRsbPvJw3BRtPCKEar4nve8J+I9eMec90yYMEHhiwVrVxWnfRFg/RNLEhYs WBApGYxRUXkEHBuUMCgvAbH0aIxDDw3GH0M48cTy5dRVISAEmkcgc2WMIsJEUMhgLn//+9/D gw8+uEoMNALTDTfcELbffvuw0047RQIUz48fPz6cddZZbW2ZxjvWoqjL5nuHUuhIBBhX++23 X+SJPu+883Kb5FsBJjwHYQbjzsyZM6OwRHYo8/UXS836cu2110be+a233rrXao8B6POf/3wr iqw8hUDHInCoSfZ8WLvZ6bwnjUbMSwGjrBzFQ3SWbd64CrEJmdnvREJACGSIQObKGMwESzPh iawZ++Y3vxk22GCDKBzxyCOPjNaNsX7j3nvvjaxlPLP//vtHVUaI8jUcGWKQadKEEqxchpJp Pu2aOOew7bBDsHCxdq1B+5XbQ+/afWzVQh7egxJ2zDHHRF7ASy65JApTvPLKK8MRRxwRrRt7 5ZVXorVkKGWLzI2NkgqhxLllulY+adw325OVNY2UtE41HRSVShYI+JjycOAs8lCa/UPARK8o Ksg2cFyF0uJNKHt33hksXHyV5PWHEBAChkDmyhgoIxR5DPRXvvKVVWKgWSsGg95nn31612jg FfP3oh9t/A+Wpp6eYJ7B9IStNoZjtaJb1Eq4++74PLZx41a3yq32gi6khkCeVtfUCt1gQs57 eO2rX/1q5PlirRw8Z5Tt2MOurgcddFDEe7jG+oxWENbnZ58Ntp62+dyJajLHQ2ThLhWsmk9d KQiB5hHoBt7TPEr5prByqX5mmdoeSpEslFkGSlgItDEC8U4ZOVUAYYcP1mqs8vzGQubX2UXR 46NzKlKm2eAVY4v83/422LqUTLNq28QRFm1/hUgQZX2dSAhkhQAbB0BJqzxCIQpY8lpW+VdL l3UZ06dXe6L+e3jif//7ePOg+t/Sk0JACAiB7BCwncPDH/4QbOO27PJQykKgXRHIVRkDJIQf /yRB82t8dwq5Vwxje9ZWp3bFDFxefDFm0rLit2srtke5K/EYv97KWsAj0gpTpB6sUxXPaWWL Km8hIASSCMCP/vGPYFEIyav6LQSEAAjkEqbYrVAjEF12WbwoVoJR+V5gzlHzTITw2GPBDrMM tqlEsHU9WmdXHi1dbWcEULZWRmBnVg12QmNMrdyALbN8lLAQEAJCoFEEMFBrDX2jqOn5bkAg d89YN4CarCPMB+GoFcQZZ4QFFJnWXjuEG28MduB37CH73e+CbepS5BKrbEKgfwiwjsvOcc2M iMK0JXBRyK8d4xgICxLFCGDkue46oSEEhECrECDoiTWxRMKIhIAQWBWBrlTG8FjlFQ3ZKkWM ZmYNFmEBRSVixy+/PBYe2WmJtXXs6IRCVjRCsbXTF0RCoN8IcFYPa8OyInga3mXG/SOPyDuW xBmPJEYfvPAiISAE6keg9Nyx+t9c9UnG3uGHh3Dzzate119CQAjYsoJuA2Hhwjh0sFNd5Umr E6GRKJ5FJTvPOxIcvS0IrSqqAslE8r3vhXDppfLcFbU/Fb1ceYUp+rjPy+BUdNwpH+tRr7pq 1TBRjD8YWURCQAhURgAPO7wkjbVeKHZaslEZa93pXgS6ThlbvDgW+CuF8GBBbXa9BcpFqxjO j34Uwk9/2h4dGuZ+2ml929njRXRBsmg1QJBm6/GHH477T9HKp/IIARCQAla+HyAE7rhjCF/7 WrBjVuJnCBvFIFQkeuKJ4pWpSPioLPkjMHp0sCNB4kOhm80d/tTKaKFmy6/3hUBWCHSdMoYC cOqpIay7bnlIN964eabz9NPxhNoKpoNwQYhSuxBMvpUCpJ31a4eNx6ET1azkKIk8d/31sZW9 XfBVObsDAYxM8BuMBoynVo6pIiIOnznyyDiMc+rUEMDrmmtCGDasWKW94ooQ7BxykRAoHAKt kGcKB4IKJAQyQqDrlDFwZGKuRO9+dwh//nOlu/VdZwdFwgVb4R1jwxD3+sE8ixymCJpJoZFQ ojzX85E/gs93vhPClCkhoJhVIrBkPZvW4lRCSNdbicALL8S7tqJcwN/4SHjqaxEUsOOPD+Hs s0N49NEQnnsu9nTDL7Mm2gYlqx6CBzYbmVFPPnqmWAhw9ipnHQ60DslvjtvwM1n59nNZi1Xq xkuT1vqzxnPWG0Kg2Ah0pTKWVABKmwchplklqpU7KCKAUT8UQsJxsP6yTq6oBHN2JYj1WA88 kO55S7XqjfBKaOf/+3/x4dPVnqdf5K0sViuP7gkBRyDJszbZJISTTkpnjYen3+7feL05MgPa ZpsQCAeET1ebC+Knm/8XL1w1r3syB3Z9ZFMjUfcggAL2qFkIzj///HDhhReGpy20ZpBp5BxS /3s7vf1Xv/qVbR51Q6SgtTMq8Ch4E3M+uyeLhIAQ6EOg65SxeoTpZi3Kzb7f1zyN/4Lh4e35 z/+M38WT48pO46ml/wZl++Mf43RRfDfcMIQPfjD++8474x0V8zz8mf5AaBfWaN9IpFKtCXGV Za8SOrpeC4GkwlTr2Wbu05//+Z9DwBskihFgfPtOioccEsJFF8XHAOQxnsmbcxTrOWMOxY21 bKLuQ+Aks6C820JzptrAxRO2zCacnXbaydZVnxYpaC9auA3es9hTNjgMH95eGLFj8rveFXvt 2ahLJASKigDjD+90ntRVyhjnV7FtOgJ42oSSUe4cG/f85K2gEapIntQ177yrYYsChtJFKCjK DxPKzjtXeyPbe/QHJgbGHaFLlYh25IwoFMWcx2ilIul6GyFw9dWxkaSSQpamUkA47Trr1O+N aSMYUykqY5gw8v33r09BajZT+NyVV/ZtHFItPXg1ypuoOxBAsXrHBv+7TEsZbTtlvGHnvaxv Lly8YkNtEt/ZJkeeQQkbYh2X34tNY58zZ7YpbX81A8NbbQMUc/6ECfGYq8QH26YyKmjHIfCW WcumTZsWGUMeMS8G3uk8qauUMYTuhx7KZrLz9UTJxkPxYKOQD30of+8UkzpCQFpMD2WTzSua Jc76IYTyr3+Ny4cQCnbQe98bf+f57+zZscWckE6s5ZXCifAunnxysAlT3rE826dT8rrnnjgU tpIhiPPBUPLT2N0P4wZjnzA80eoIwJP//d9jnowXMQ+qxyiGVwy+vfbaeZRIebQaAdaG3X33 3WHy5MmRQvaExc4+//zz4bjjjov+RgGDbrrppnDEEUeEDTbYILqO8rZkyWJbfrAwd+t9M5jR t2XIbAZBvZslAoyr+fPnh1fNa7PEJmIMH3lSVylj8LasPBsu+BALTT4oGUz0p5wSh8OgmOVB LuxRBnZ1ZL2Yl62Z/FGYUFyaJQ6hZr2G4+HM+YtfDOHgg5tNvfL75PPaa6vfRzAjVBLi/h/+ EP8u9y9hTgjLOY/RckXRtTZDgPVKn/pUZUMQfZAxUckY0Eh1MWqQHjyom+nJJysLf4cdFsJe e8W8KA+M4D8rZeuK2eGt22672OCTRj+omJFuFAIBLPF77LGHGflOtiNTHrYjaX5qkSLDI4Vs ri0eRCD8kS1o7unpsbnptehvQqdGmOVm9933CSeccJTJGGZ1yYGY+5p1FEgZy6GhlEW/ERhs wvM//dM/2Xrrk8K4ceMsrDxfr7OJ7O1PRZi4mGiZTPH8ECKEIIQSxGJxFBlXkrJEm3zYBIPQ PzamwJNFvsRq/+lPcc6se6KcjRJKrO/SWPouXiOUPsJAXbnyZ1gfltxAxHFwwQSczOAXvvnN vjUd/m6a3/fdF8J//MfqeXCUAbusQSyeB59y5OVkfVuR1uCVK6uuFQ8BeAEGB3hDNfJxUe2Z eu51qiJGdMPjj9eDQAgXXBAs7KTyswcdFMKtt1a+n+YdBFH4LmHRlYhnfDdM8ZhKKHXWdbxj hCNCB1mHJExxkXVy1ouhjG277bZhzJgx4QXbktN3WMSCv3Tpkt7z8vJABONOEeSsPOqqPISA PGMlfQAFAAWjVnjcf/93COedV/JyE38yKfaHELjwjLEbFmFCEIoGyghrRrImQu123z2Eu+6K vVh8c6gyGLKRB8Q2yyhsjRKLyksFBM7dQtghvIYQPtrh/vvjlAlrZAMBvGmeN3dcGSvNHyEr SwES/ClfUjGkDCiPnu+111aecHjO17f5RgCldaj37+QmJvW+o+faFwH6NuT9LP5r9X9RxOB5 osoI+Fl/GH5++9vKz4E5fPwvf4kNLOV4OoZPoheyJvjFMceE8C//EvNmP3S6XL7eR8qVt9zz utbeCKBgoXjtuuuukVX+eLMMbr/99mGMKWDrWtgGfx977LHRx7e8b0WN0zjyx8udhpfN09K3 EOgUBGz6LyYhmLChApMv67yqEcpArWd4v9RrUy5NJkGUjkatQKSNIIVnBYEfCyf0gQ/EawD+ 9rf470b/xZpK+BIhdJW8Np4mz+27bwgW1RB5qSzyISqT7Y7ba0Wjfo1Y38kT5QEFE0WTEENX LJ96KoSvfS1Om93CyPc3v4lLgwLIeT4IHijT06eHwPOUpRzV0zbl3qv3GnUmzIL6J4m/6T/c J5TMhaHkM/6be2mEKYLN3//uqVb+Bnu8mqJ0EPCF8OViwctdSyfX2COCoWbUqOopmlE8lVDg 6rmkfxeekPX49VLD5+FzfKptuAPfNKdC2GqreIMexne1se3pZ/ENNiNHxmVmPR+h2tWI50v5 VLXnda+9EYD3LDWh43WbLPmgnBEihQfMr+Exy3t3tySqafVJ0sFA3ah8lSxLp/6GZ+UcGdep ULZlvWyKyo9gOmwZycLU0kMMuTfMNBgXivAsXXJJLMi4YuMlRSmwNa29hKBTalFOCrIoEzff XDnMrjch+8GkzaC46qrk1dq/8fhwpte998brxAh/c2JiLS2f36v17QdIn3NObcGcTQBQJN0r R5nABqUIQc+JayiMvsW8Xy/3jScN5YtIivXWC3bmSaxYYZmmfW6/PRZ2uE+6fCC+yd/xfPDB WEFMrjujnGBTSjDstInykJdj4+mDFwqzGSOjb/4uR+XKWe65eq6RFmvVahHYg7GoeQTgOQgz CDfwGF8cT8r8Jl48K/IxUSt92ruSsaLWu628/8tfxjwh6zKwnpPzAG2NdWRYqebVgu+gsMFL MOgx5vBst4IoJ94ANg0xJ0eYMaN6KShzmvymem66KwRqI5BWn2QcpOllq13y9nni17+Wkto+ rZV+SXNVxrD0XGuxYJMnT7a1VTeuYulBILrMNI8FNnPGgtIK+14WTUpMrHgkWI+FYoWXCGWM gV1KKGEoGjzngizv8jwTHDIXz9SiRpUnvC54h/AgsfaIMqdBpIuQhsepWpkQPGbOjC0rPpFT BixQKEzJ9V7cR+moxztDHXiXHb5QyvB0YeGfMiVWWhFwvK6e7xVXxF40roM3YZEIUChCXgfu PfvsqqGP1IG8aq2rqQfXpDJOKKWHJ5JnkuhDY8cGWxQd97Fy1nMwBC+vX/L90t/ki/BXjcCy 3GHcKMf0WycwanbRtKfVzd8oX1ibrzHQr7ZO/AeT6rE8c92NPz/4wQ+sjyxcyXvSRauefuM5 lhoL/HqtbwT+evharXQavY/nFp7g4cm8z7oo9+jCu6qFE5bLD+twMrTZn2HssgYXjP7v/42N O36v9JtnwANFmI2M+K7lmSxNo9G/bSO8sso0a9zYRn/8+Biram3swirGQ5EQ6EQE0lLsOg0b ZCWiZpKOhk6ro+pTGQET9/IhF4i2s+2i/tlOJH3GFiHNNa0FxYtY6J6ennDxxRebgvX2SgEJ D9oWUbgfAj87Y+FVcSGWbxd6GdxOeGxOPLFv0uNvFACenzUrXuPEoZ+ViLTwxKFQlVP2qr3n ikalZ/pzHSGCdGtZ18GCdQkoqgjxEEIgg5v1Xi7UUz8GPWny7YRiVq6+5Av2pPHAA/Hiea6R NvnwjfLkf6NMnH12nD55kofXwfPim+t4/RDayBdFjHRMTw/Tp8ftx3P9JYRA927edlssICLk cd5PkigHyjr3NttsVUz8ORRs+pHj6tfLfeOBpP/hveVzww2rCo3kQ9kIt3IvnG9yQlipC9Se H+lxPksWxM5droxkkX5R0oTHYAg68MADw2c+85lo69qXrONRdzz0s42x3HLLLdEzlBkPGmf6 OBHGiqGlP4SXnX6eHGuV0mHn1Y02qnS3/HXWRvn43HrrvmfKGRX67qb3C2zYARADA/2dsYzR zPOnj1cLJyxXEvjM5z/fZ0DhGcYDY9ePAMDb72OlXBpgAh7wlVq8s9z7/bkGf+CsScZ4kuA/ KGL1EPyZMK6kUaae99rtmXWM2XcD72mndnEDRtZlpo8jL4j6EEBuI6rKNs8M8AtRHwLIkeVk 074nOuNXbsoYAhFhiLvsskskAMGIkwLPAzYDv7f3oKnlNlhH22R7gu12dYdZG98K554bT86u VPCNxwKvB4KOD26uo7QxITJx41GikyPoI1Rz4DBrCSoRabHzYLnNHiq9U+s6zCch29V6fJX7 1JE1V+Xe5x5KIwI/dXWhg/wgF/b57cIRFnTWePABK4QVFIP3vS/2XvFsklBMv//9EH7yk1j4 YZMLysIHzFFkTLeOPE8II3xQAM8/P1YMEU4Q2Ai/Sp6f4wwZgWrixPge5bF1zJHSTLmaITxs CGQIw9Qd6ziEIgQh7HAdQZF6IOx95CPxttLxE33/0pd4jrrVIvJD6e/piT2JWMV5F08ihPKJ 55CQT++zKMK0Fe3HfQRsmDLhXwigbMSSJj1pwPzZNLwpVij3EKWZfpHSQrFyj9dWtoCIM0QG GtBrr+yM1H/OnDnRAnkXDv38n8uNYVx77ezIg1vtyINq9aV/19t3NtmkPqUtmR/9mU0q4HHs DugEP2AMJXmA30vzmz4ML2A847liI6VkSDheeTdM1JMvfZ93vvzlVY+Z4LqdixuNZ5puhx3i 8Uva5QiBBjzA38dZuefSvAYvZtdWypokeG6pgpa8X/obwQNeWA8RddBOitvfbPE04+oSC1vB W+1jrp666pk+BOjX1TysfU/W/4udRZM8pP43G3vS5ZPG3ursp4ncgf8z3yOXoJyJYgSQzVjP 3+lUh3jZHAQwWxanXmD7DN9jJ59iieYQw8PsoJeNbWEVf99rksRDphGwSHWuzWhxmCKdcrl5 v+ZZON070WSGMOwTqwv9JkdFExdCB0oAkxjrcRCemKiZqJiwXHmoZf3hfdY3MaF6Xs0hEL+N lwYBvVGiHHhGEKxKlQEs7ljswQAh3ok6EpJjZ0f2nqHFNRRXMPrhD2MFC4ENRYmy4X0EI/JK Tu6850qep48SiKeR5xEcUDTAn2fBjLKiwN1xR6yYIIhwyDOKGWmRLx/qw/tjxsRCKF4BGBFp INg0Q4RFUgYUGhQfp5//PIT/9b/i8lNmQlkpy957x32n3ERR6t2g3DAI8IRgpGeeGQtcKP8w UpRY6gquWPFReCHKggCNEuv9CxzBjvcwGHz3u/G23IQ9ocyhSBJPTp3SoDetE+AZesUaGo9R pxK8B4HvSpvh4C/U9S+muXzAFgmOsgHCltJ3WCdFQHzcgObQVXgPCtzaaw+P+NNNNw2P2hrl vj/Ee7RvPYQhiLHDmKyX6DdsCIFwlrQeshU1Z2nRn7IkFC/WgNDXMdjYGbbRuih2UoUYJ9Sn XmWEsQYPPvTQmAckeRFjh7MI8RyBK2OVepcjFCC/5+Os3HNpXjPnajj99Hi8p5lutbQITZ88 udoTle8xf7CpUmnoduU3mr/DGVnM1P8CzwAAIABJREFU+xxgzPhkrIkaQ4BxjtKU9rEMGC8J A86SaG54Ft/18oQsy1OUtF0Wgn/A35Jr/ItSxlaUA/5P5JCded7xZGJltgSzReHiIDW8Yv9t LicEHwRCDjJ8zszGMOh99tnHhNQXojM2nEkPGTI4nHrq+02wHRx5wZjwEViYaJlgmZARdvlm 0p80KRaMGewoVAg23PfJ2L+r1RgmgfBEXv0lhA8EfSererQGgnNv6iUECZRJFAViiBHgYcIu nFBfhBYGMYIXSgXvkC8WFjalwJJM/SEwg9lyn/fAAiwRfghBRCZHgUCISlp2seqDY5JQ6FAu kkImjJUykibpQwiCSQsPSiPlsEixqC7gRPmdPvzhOFSQPFGga1FSAS19Fu8TbUm9SM8JDFHS 8EbRb8CBnc5YD4cSX1pX3qM/JfsOv6nj5z4XW7L4m7pSF28TFCmugylpoxTisf2f/zP2GlJ2 rzvfKLh4HQk3/cUvgh38Gf+m/VAgzzgjrovXo5lvxuFHzA14isXFsXFFpwpE1Iv6nWHg7W5n PnzjG9+wMfBkpHzNs8H1D9NitrZYtg996EPWboOiZ8GVUOkdd9wxMhgdcMCYaMMFHycox40Q XlLGS7L/VHqfcUz/8zFe6bnkdcYT/Yt3vD/5fSZ1+EQjxBhuRIGDRzFuLAI0Gv9bbBHC+98f eo0pjAfqXlq2SmXiOcYtdNRRfZsMcZ2xyweMGNc8xxguJccbbA4/PN4ww9MsfTbNvykju9n2 N8yIujRazjFjYmWKdqiH4P9EWsAT6ZvwSYw/rrjWk0Yzz2xj0j6G2CNMusIDLWocAfo+IbjM 52kS81zW/YCxO3p0PIbhqaIYAdoU789ZZ8U8IClbdTNG8Kdyc1snYmLTR/aEcoXCxfdmtjCH cCGUsOU2MvGGjbUdFDj5+l/sIJb45GvTKgJryQZEu/exLTyCKgvF+aZxmLT4jVKAFwyhFwEb pQBFCi8L3gR2/8OiWq8wUC8aTH5+kLK/w4BiQkVwZv2Wk8m+kRJSj0Dm7yAUEdpHeCVE+fGM sDietUUoK+RFXZlYmWRhpihh/IbpgRe/IRQfBH0+lBMhiTqQDkoiYYtnnx17ycDSCeupb37h 17weKBAIkBDlpWyk6XlynRBEdzGDF/XA+oNygqDoafEsRNkQuCq1VxJ3hND/+q++7fTjFOJ/ KQ8Ewy+n2LErG22E4FYprziFWLBEyfSygh3Y0t8IDyNsCsGXskHgR99EicLCRTthHCBPPIq0 DXV0Il2e4xnS5gNRbq8HadQqZ/xW/f8SvtepilgSBZQrwhGPMul+X5OWCZcmVBEj0ZZbbhkZ gj772c+GnW3fcZ4dMmSNcNFFy6LxhsBKW8NX8FDSrk54byspLhg0enri9mac0Ob1UqPtjMLO O4ydJNHHvC8lr1f7TbkxBFQj8nGllPQZ7whY//t/h3DkkTHv5TqGGPj0qaf2heliNAKPSsRY cIUkqUzihf74x+NwaucvPEvYOQIk4+dLX4pxhk+CB7wT3mMBGVVD0yuVpdZ1eIfj4M9SFsY/ Y7mR40yoM3NZPUZAeDK8Bt5AHRHM8bQ7sVtjJcMfcyfzIh58yoliBnb08TwJY2w38J6sMKWf taPA7mMbXHw+zQqjdkoXfkl7Irdi0IHfNWpIa6a+LHWBrxPy7nJMaXrIgTZNRvJ26b2s/qaP JOeErPIpQro2ZeVDhAhhCcMKTZjQcRZDx6GGbOix2DSF+TaDbr755tEzK1ZQrJdtQr0umnCw bkJMGnhXEICYVFBKELYRiunMHp5I6AUdiut8fJc6BOq0iLIQHkSYjk/+MBoUogMOiCdIz8sn ykaYDxMlgxHhHaLs/CYt6k+9ETi47kI7eaP4UR6MjnjIUJbAhYGEMoBAg2JG+rzn3iWY+ze/ GefJBI+giZWmdJJ+z3uChZnE1lhwxZuVJAQFVyC4vttusXeP34RU+kBH4MPjV9omeAIJr6Q8 5QjcEXScCH1EIKPOCJ8uIKGEQ+BQTrjlWTYaSIYLxm+s+i9rty66KMYPIRBhCSw/+MH4OYQ9 lEyU3P/zf+JnqSPXWOsFxq5Qo1AhOJMGm4W48Ey/oN4wY/AoJ5CVq8OqJdVflRBA6IP37G9b 2o23nRQOsAGKcWjTTTc1RWKp8ZU3zDs60pi+NYQR+KN4Mf58fR9jizZFwfDxzHdywqTvo7Rh RKGP0r9N14uUdb6zIPoFYxXew5hulhDO6cuErlVSNKkXOyQ630NpwrtMCCHhhRi/6OsoBIxz vGWMCcY0a6psn6ZeXlOtvDwP7hDh05wZRtpshmFNF40rFB7wZjdHxhYh17yX5LWESGexFgal krxdwGQ8jxkTz0XwH9bNwo/KjeeoUol/UKBQWlm7W4n38Tj8+Otfj/GFH5E3fMPrC29H4aX/ liNCyr/1rVhp/ehHQ+Q5JES7VKks966uFQcB+hRzN8JzHuRzVX/z8jHp4zk5tvubZie9xzpZ 5EaI9bDsFusyTHw123/hr+yTwBFKlQyHzAsY6yrxlixK6Hwti7SLlqZN5fkRQlHyEEMUNCzW EIIQ6zviNSxr2JU37feDkceBrcchBA8mHiYgBCEmfLcocA0GhcBPkghGEIIC1xCaUBJqCbWe dq1OQDoI0CiETLj8zURIufhulvD2oVQS2gZRTyyn1MUt3mBBGag35YVhkj+eOUIUUWrYoQ2F BWGJiRwPGISS4tjFV+J/SQOFl3cRJlyQAEd2oSSmHKEHQYBnLJorWpuSTIPfKCmsJXFPHNco w/HHx2VFQezp6Uuf+xDMmk08qGM5QuB0BY72JCTIPRbUh81E2EQApQ2PFe2+sov1euiS6VZr Z9Z6sb6MPkF7kB94UHdvF9r6O9+JlePJk2Oh8+ij43YiH4RED8fgfTBAkPzYx/o8iKTJDnL0 ITwvTLKUC5zxLNKW4EGbifqHALwHo88im034hs/gBXPit1vqmYyYEBkrGDcYc7QH7UR/pm9B tEdyB0zGDeuGXEDiPm3N2LEo7EyIvsn6UBR++laSGMuNEnWkTzOmkh4s6kY4MwYhjBjgAE7g UtovKROKGmlh/HEDBNvVY4SAn5NeOcK4hcEHYvySNnyIzXW8fihk5P3pT8feONqIfNj0A+MP YeGMGyfScB7g19L4Zv7BywTBm5kHKBt5kSeKFVg5v+K5Sm0Cf4Ef8j7WcernhjLecyIf6kjf hBciHMFnwQ3CWICxbMyY8vMQRkz6CtEJ8BV2rfzkJ2OFOUpA/7QFAow75nP4Tx7kcld/xxFG GfgBfRvCONLfcN44hfr+Remjz0PJ3/GV4vzLePb1evDL//zP1flqVqVFRoLfEPYKj3aFuTQ/ +Bg8Jw2jX2na+tvkv+KCMMAm+iG9wi/lpJMgsGJp9XA8OgjCAwIAEx0TDJOxE5M0zzOxYenl /WqEcoPCgMBdjVwAIX8YI4TAwETZKMPCRYx1GyGPOjCpw2SZaJnwIfJgkkXJREhiAGGVxWvD b+rFu3jC8NBQZ5gfmCH8oKh4mUkPBQEGmQy74jpC1s9+1qe0ISRAvI+H0gUNBi9KE2Wy6K6I sLSiZEDgstNOMQOkfRAYGcQITginKIkQymMplXrj/D54UF7Shhx3cCAkkLUPLGrmOZ7BSo4i ihI0blwIp50Wv1fvv1iYE/J6lB84gx14QFj5sWo5IejQB5wQjvCOQXwjaCKQgqO3LRawE06I J1cUQPCiHxPKaY7kMGlS3CfoI6LsEaBvswZq+vQQJkyIQ0ZQsBF4UdJ8rQZji9BcV84YOygO eDkIjaO93IrYKE+ot5YIGPArJvBSQpmBL9Kf6iXnGXh1ERA+9al4jOIFJySXPkk9CUvEmuqK UzJ9xgj1xuDCYeo+VjBg8DdYWlR6LzbJd/GgeVizG9KIbmABN+lCjEk+KC4Q/IcDleGb8ByM UfAliLozttw7HV9N51/qzwbAePtQDMkfHofyDu5soEIfwMvoZS/XJs7n4ZG0J/2K90v7DHVB gIXPofTDv/EWoqS6wNnTE3sn4auk60SZeB+hmvZwjGkj5gWiKETthQB9yufCtEpeyVhA/6hk IKgnb/pYci5F8YC/ZE2MC/fww7cIzy0KMW8QZQAx5hn7EHIByiptUcoD4ifS/ZdIH/gIcxve uUp5wnvg95Sz0jPplqy7Uls5vRWv0gjaNLoLoEweWBlRUrA8E1oBM+IaW9XDlFCgmKB84qNW pOFCO5MQTKUSw+F5BgXCdJJxcL2UKJenTd4MeAQBNmgoVTDKTaykh+DBhI4AjvCCMtfTEwvf 1AUBizwgFDCs0tSFCZWJFhzwyvA7WWeeJy0XSKgvShVryxC2UNhQ6mCG5F1KpI9QweTtFmzK cvLJcdgVa7W4R9nAid8IO4QPcbgpRHtxHeFjwoTYEvs//kfcnuDBB8K7Vkq0Ee1QSpQZgdgF T8rpRCgSa0Zg+tSRb5RF2hxhBaUGBZXfe+0Vwk9/GqdTrS94vyEP3uNZGCXbz6JkISwS3pNM AyEVoQyqJACCC2WkrVFeCbN0ok6svcFijeJKGUiTPFAORfkgQN+mD2IYQIkfMyZW0Ggvxh3j k75Fe3k/oU/DCxiL9A8mLHiB9/UsSk7alBPeU0r0TwQoF9T9PtZP+mApwdPol4RUwm/ggwgw EEYqJmO8KPRrxhLpukIUPxX/C98hX8K4ndiMw/ZPiXgB1+AV//qvsYGCv+nbCAXUJcl7GXel RhS8jfCiJPEMigVEGSkvBK9gbSj1Sotc+QYvFD94/3779Sk4hDCDEXVBeIFfOK8q1ybuzfri F/vahfLCrwmTdcKYg8cP/k2/ZD5gjZ4rgZSH+RBsIfgKZaOt8eB9+9sxtih9omIhwAZChFKz jpXfTnjruZb1RkuMZfoc/TMLQtZJ9jvnr1nklUyTsFwM8RhxL7wwNlw7T0s+14rfGLamTy+f M3y1GeW3fKrlryIr8WHjpT33rKxoISvihaftynnty6euq/UiYGJDMQmBBg+Eh4Fg3YRhMKgJ /aKjMtmhUGDtQIBnMmJS5zoET0OQ9ckdIQFPWS2vVyXPTJxq/C/5UD7KCROjbFjTSxUxLwfK SalQxqRO2AmCA2VmnQnvcw1iYiVN3kXhwsMzYUJ8rhhKAYIfeSMYUddKgh/32HIaSy0KCh6s csSAhBmTDwTzRBgiD8L1CDGgvqzTQNB0XKkHwhGDGexIg50GyY81ZQhdXEOgRZhA0UOAOPbY PuUtynDlPwi8rkgmr2MhRynx8Cn32iWfoawIPjxHuegXeEoR1MAMryHCNEozRDlK2yW+09eP EO4mTYrxJW8YPETdStcCofShdGIsIO6b0E63PvMObQROlAXvgHvNuAc2MEOs/FjaESQJ9wIP 2jCp9PG8KFsEGJMIsvAQ+ixCPcYF2hiPmG+5S/9h/NPHUYoYj4wThGzajXEKv8qC6BOMS8Za JaIsSUKIp7yl5HyR8cM4pn8T9ov1ln6P1xlB/ytfCZEhAT5BPy4l+Ah9Fy+YE79RSsAR4hnS R+FACSMtMHLFNn4q9szZRpirEO0C1vUQikslbOAN9Qg8tC98Au87UQNnnx0rOfQFPiiarK91 jzh9gPEP0Rcoa6klOdkmzGG8A5/3fsJ9FDG8kfBZ2pn+hFcdfkIIJN5+8AczBCSULcpJXvQ5 +iftiHeTZ+EvlXh/XFr92woE2EyIXV5/YdvocgTQXBNk/HgfFDHOQZxq2xzzOyuin9CPyo3n NPJMhh+nkV69aTAeMOCzDIAxhBzlfK7eNLJ6DuWGcevUqvkdmRoZFO8YfAcZqhzR/ShvKY8u 92yz18jHI76aTatd3i+ZpotXbG94JkR+Y2lkgkOoxZuE4EDnYVJnoDGZuXDNpIWSwN9YGrCI 1NPhUQRqPeflIm/SZwLE41I66YIoVlK8NlgT8OA40fGZNL28MELS4zodkdAS9/rxDpM67n2u u+WXtLFWsCU9Anw5In2EQoQa8oMZIRSV8naETgR/FATqh9KAIsOifAQnBFPScisvz3ONtAmr QzFBgfOF6GCPxZj1MliLEcDYKYhvcHLhpbTMjkfpdfKl3j/+cbyIHeUMIj3y5UMbJ0MZaUcU SvJHMcLjBGYIo+BNuKtjGafW968rpayLoy4IdgilhKnRRvQTmD3vUwYIwRKFFyEWzFgQizDk sfK8Rx+mXD090SvRP5SdkCcUPxQwiPYBY/o0eNHnRfkhgFHE9heK2hih+/DD47wZk0xg3Kdd 4T1YXblOn0Dhx5BC/6Ev0971Cjk877ylXE3x/Pt6WL9fi1f5c/7NOKIflhLXEPwZ74wP0kWp wHhBP8cLAx+ljvRd+AhjqxzxTKnXm3Bpn+hJB68SigzRARhOMHA5b/E0GRdZEeMLvJMCUbm8 OGoCrx514h0MOfAZBFjGJO2LksQ3xLwDVhBKKes/4JGViDmBiAIw9rYnPd6FX9OPwAieDe+C wBJjFoRSyVyI0gy/oIykxfsnnhiHPFEe8uC+qHgIsHaejc0Otl1wppi1z7f9R1H7jVmbHzBt wj1mrK8fOnRY75yTRm3K8YM00vU0GGP0S6dKc7zfT+sbfoMhgl0AMSJhFCpniGo0P/h/M3Wg DMgJePkJ3wabeg1MjZa11vMoyn6OF/ycurWaKAPLT5g3ka2awbo/dcHw4WvI+/N+f94pMyX3 J5ls3nHFBqEAoZ+/GUxM2AjETDi2AWM0wWN1ZeDRuZn4mOzp4AiyCExMoCgJpOPWx0ql5lkE aJ5NEhNwcuJmskMBxFpKOAgdxifT5Hv8xiOHYMFOVpWEahgiE64ZxnoFLoR73qNOlNvzx7pN h0XJoN4oJj/4Qfxsad6UC8GJ+jDgscCy1gkcKwk7PI8y5p403iUd2oDfTPKf+ES8gxqxxngu IepP/ZIYUz6UyOQifNLC0luOuFducuA6ZSZtBByEIQjhB2+FK3yEVtIuPI+QRz0QYrzv8A5p YElmB6HkJEG+1I8DbBEOIXBmXQr9EIUJBQ7FkzblG88sChnKLt4uiPzBgTxJ39sNYQhhlzxg MuzWCMEMaXvK69jxLJjRFrxDHUXZI0C/ceMN7el9O5kzSgQGEPqDncgReZ6xdKKAoJSxTshD 52i7SuMsmWY9v+lHrqzzfLJv1fM+zzBG+dCfMew4UR8MO/AajCbwN/owCgG/qbPzN54pN0Y9 LYw6jMtahDWWUF/qhHILr3DDRa1307rvdfL0MJrhnfb5Bz7D2GPc06bwMgQo+DQKWi1Cia/U /qw3ZXzTFvATrzvv8KHvsL6WkCYwL0fwEXjF974X9wf4CPzIPyi99RoDyqWva9khgLKFF4xz DbcwKzNK2To2WSEIopA9akyFXV85n41r8UZnS+2w+lstKugpK9iyyFiS5An9KS19yyNd+vN+ tXeYHzFUYMx0gm/BZ32M+fU0v1F44JfwZ/g5BH/DUNYMUWZ2ik2GYZMe8mE1IqKG+R1izIM3 5cLwDg8qwhhFDkE5ayXRl9m8DgMTMiLrr+FxWRNj74477rD1uLfYvPiY8dsKDDejggzIKN2m k2VyYoIBDxQIrIBM7oScIBTQifFYMOHQqXmWyZJJE+2e31zjHgOSdFCEmExRRqoRjGKPPWLh 2J9DQGayc6sKSgEepB/+MN6BplZnoT4INYQi9vR4qvE3A5F6kDZbSyOQQHwz2cNMsMyThhOM AIGedUUINAiN/p4/49+kjdAIs8DDs/XWMY5gCR547XgXJuMMmfqiiDGxky8f6kh5GCwoYJQb wRPvgdefPAihqSR8eJlo01LLud9DyAMLLPJJol1haHgHnGBgKIb0B9rV+wkKNc9TDjyWpYyO erCjGBboJLlgxvoN6sl23YQQ0X/YeIC6Ejo6ZkycH0o7Chm4ElLku+ZRN/IGUyzXTET0SceF iYg06a+UgzamPcgjOWlRNuoxfXrsZeRvUbYI0PcRitkYA95Rjl9wjT4KT6IdCd9DcaF9GUOT JsXKOfcaISZDvCCViHHGmi/CbuhbhLgxBhsleBFCSdLLhgeGcQRvw/MCMe4xesFLk9vD8xyG gkrE+HaeUOkZrtO3UWJRgMjD+Uy1d7K+x4ZK8FS274fgjYzxJLmRpdH29TR4D0GDcG7SBwf6 lGNGv0IRw5vlfIeIkEqEYYzF98yJECG1pEfaomIigLI1c+ZM86pfaAa45SaAPmWyQY/Ni8dF ihc7vl5qQgbnIj5hA53dplHGli9/x+bA5+zv16x9l0eGAYT7ZgiFwOemZtIpfZdNtDCQe9iu 3+cafDbLtUcYROEn8DMn+DpjC2G/vwQ/RIZL7gY5eXIcrQM/Zq1mMgKKfODVhA2zuRPEM4xX DD2lskn8RPr/stb/zDPjsiRTR+YBp1rEc8gttQgZDSdCNUIOrpQny0/gvRjVMdShlOXBxxhv T1tmjMEFJsgy1vIkE3uLSTAXLIUMHAYTigHfeCj4oGDQ4CgkdBAGiHcUvl2xYMAzydOYdHwm URSMWoTAzxoBZxYI5ggupMEgZKKjQ/FNeZzI18vh1/im4zHoUFZ8nRATMnVC+cCzxT2EbreO 4s1hrRbhbkzWpMEHpsk7WKupPwI9IXg+kSfz5TfKJWEqlA1c+fA+igPY4CHib5QAlD7PC+GS /KgP39QV5QPFwcNwSJ91CG4hRhGrJyyLutOm5YgxAM6+eQjPwEjwPjI4sW4hDFJ/PHwoMeBI u9K+hInhJaSeYMO9Roj8wYz2wnOFosXfpE0bkQ9eOLAnD4Qq+kCSYaCs8j6YEj6KdZowCVd2 wZa+ybpD1okRzokAiLJXT/9spD56tnEE6O+0bbmxTGrwJTwWjKmvfS0Wqj2MEQWOsct4qaaw lCsVY5s+waRejvCkoLwwZlGmMABgHKiX8PLi8WWMswaM/kyfZPdE+rArBT6+qQehuSgGSUJJ 6I8SmEzDf9P/Uf7gPY3Uxd9P+xvBFC832PCbcQ2/SdKkSaE3bDV5vd7f8BN4GjupYjiqRPA4 NvThG5wqEeWjv3m70Qfpw6LiIsBxGruYNfUEc72zLuyntqsU5x2+YlaeF8wystAEnL1Ni+Es xJdtEOIZQ2AcahPLKaecbNFBu5tCNjQyBuGlLUf0YXhULXKveLXn4BONGh/wvCflo2rp13sP HlYPUffSccvcCp8msqg/BM6c14pMgMzJh3yQEzHeoXBhLEOeQxGF8PgzR6CQmu4dedV4hqUd zPvw9HK49gfvOMe+f8mb8zHpA8hT1J2/Swl+BDHfldNBmI+QV+DR8JZy5eV98mEuITKkHMGT WEbCjrAYM0sJuY/12BjJKQcy/uDBpU9l8zeb5HzYhO1TbGLfx4RjPGV5konExSWEXbfw8ZuP d36UB4R5JiAGGJZBFmrSmfhwHUGY3wwcOhKfeolOg8eIPM8+O36LPLG2sK2wW6+xFuPWdaUN pcQ7djIvOhQaP++TDoSQ09MTC/N42CAsKgj6vh7KBwCKKWulEBC5DzNBIHAFCutpNUKhQylB qMIqAy7gRggWgx5vI8oZXjPS8rDL0jRR+FB0KpFbZivd9+uEDjKwKxGDHSbnxKYhfCAEN5gZ fYE+MH16/BusaA+34CPY4o1qhMAFnGA41BWvWJJoRxg8YVwIqngA+EY4r0Yo2DyLhxLCc4ZQ zDWUS1GxEGCcEWpXqY/SP9mYBqOQK+G+Zoj+QL/hOnyoEYI3wE/oh3hnSwmegXCDNxWjEIpb I3yN+YU0mAgxLrDejXGFQPCFL5TmFitn5TzL8Iu0CCGGIyhQ7gg7byXBU2gDQhERKjD+0Nal hi7a3du70fKSHsINggeRDfUQ62vhPfUSngfmPVFxEUC5GmKTDR6ynp4ei+DYy5T/V21O2MD6 3CDjLSNsrv+ghba9YcLts8ZPjKEY8d4bb7xuYbLDI5kHGQXBlb6L95Q+i9ANXyAaCGWeeaYa 8Ww5uSX5DvMexgk3vCbvVfpNn2UuTYvgixhIMXaynp2xVIkwVrF2u5QoP+lgEEVuY7zXy3cI FwYnZAwUHaIJqB9yGLJV0miFLMdyCrBH7sMwDL8lqoH2wsCCvIVxvtz6+f7gnawrvN5lTuYJ +gRyC+cxUgbkPyJ/MBq7AyD5vv9GFmYuYr6g7hjsKvUDnBZgitKJQlUqFxHejfF6woTV+wXH NHEdRwjlhXxujf/K798l1jny9oxV6cr5VbxcTgwWGh2hA00ZhoMAz4SNkE0oCYoEA4qOhDeE DgNDYhMEFAyEGg99KZdHtWsM0FJiAHnnmDUrvgsTY3dHBiSfSrtVwTQ8tMjTxjL6H/8Rp0Pa 1IuOnyRwSBJ/u5KAgsWAZ4DAnKoRGIELBAOAYCCkRdkIywRjPGxgyCCibu7BKS1XnEL//62l tMEo2H4ehocSijUHJZGBiicMpggWCEWEduHyp81ZrOsEs4OB1Eve57DcYPnHkgQTTXrW6E9J b4f/Br9qVNovsLxTPj7Vwo+qpal72SFAf2c8VqPSicafZfJ1D4Vfq/ebsUyYB/2vHDHBElqM QkbIC0pjNYJfYc3FCwa/YEyzqx4CAPyV8Dv6e2n/TKaJoMCEnRWBMwpZo4prWuVxfkx6CArw EcoEVvCENIVJ8oDXs8YZA2K9hFGyEYKvtwrPRsrZ7c+iWOH52sMmkP3MTeJ/843njHAp1pRt ZWETPIf1HoI/Iewi/MITMAAR1k9fZh5njuQboyXn4MGPMG7iSUcod6K/8ww8q5pAzvMYHzCa lBooPa1GvxlX8LtGCCM1sg48DYMS83EpTZ8eX0G+KVcnZAv4InIb6THekXuITAEPFAmWffAb HunE38gCbrTC2MHacowq7KZaSh427N45eAneMD5OYIAMU47HINegTPUXb/CBj5E+664w4kMY GSkTfOjrX4+XUcR3yv9LH0P58vmQciF/83dPz6rLJ5iTMC5j4ENppl9icMKAznINPIdEChER QP5OLLvBwQFG9FW6OW0L5t0PzibmAAAgAElEQVRCJoYXk2gUrNI0oHccBHg6AB+UBAQRBlCS GFhYNXGTwoxIh2+oPwpFssOQBswOy7IrZaTPACXfauTPURaf/D1tOi+ud0J0iJX1cuKi5T3I v7kHg5g8OR7AtYSx6OUK/zAoncCTPMCTUEQIpcw9A7Usa/Eb6f0LNmCFhw5XPlvz45GDkcGc EDQYqDCa0nVf/S0FDIAdfMgbyxdWJHDJglDy+Hi7ZpGH0mw/BOhvkyatKmQQioshAsGC/pIU MJyHVKopghrvuKWR34xlBDSOYCCMCCHNJ9py6dTyupd7p5FrrVQcwA8+C04opnisCBWG4NNs FOV/x1eb/xdeT5pJoaz5VJVCuyKABR5Fi085IjTR14sl72MsQA5hTNNP8brQl+lbGC0Ji2fT MgRdBFwEZXbcxMjIvI5BEEM3XqF6vKjMj8gfyDrVPFLJMvKb8pUj1tnafgkV146XvkPeeLvg W5QbJaFUGaNsRBlhrGKJRyVi3CNbgBFGNZQDDCQQcibKBtECKBIoMRwzwe8kn8SQivEXTySK XzlyRYx75Xg116ZNizeBK32/3POlz1T7m/ITGgm/QZlCMYJ8PTC/cWhUConnPjR9ehwd5kZj +hyKHhuzsPYOPklUGgZE8kJ+pC+CF0ZqFEry4D0UevBGtnMjN+Wkb6IYEm3C/Mc8yDIg+ni3 0KAiV5TBB8EocAfDRJwqhQN6B2YQsH6JDuhWxWYVCpgKHQmrMgoZxCReL3nZeJfB7sRaAEJi SJ86wyi/+c1YSELZcHLBig6Kwok7OCmY+XP9+S5nmYHZtEJgAAcGKkIabebhiUw0tCkTDX0C IbXC/NUfCCJrDO0Co2Araya1Rtq3kUzpR0yQ5CUSAo4A45kJiVBoJyY+JjfCixmTPlaxUBL6 QthJJWLiZZIr9bRh/WU7fowaTNRJC3CltDrxOgICQt1//VeMB5EGHtqEwIm3gfMC0yS22U4K dWmmrbS6DwG81sxTKASEDyNDsN6dZQfMMUSYoEwgEOMV5xv5gbmOsPnSzTUqIYhhnLQx7NRj AKVMyDzM4+WI+TW5gVC5Z5LXiJKBXyHT4flLeumQhVhLS+g24YuM62qeYZQoxj3zMLIGCh4R CSgXLCEg0gpFAg8cnkMwnDChzyvm5YIH8+kvUUaUv9INgkgPOchlxmrpMzew5AEFhpBy5CQU SPBA+aEeY8aUT6G07OSZJNKi/iitybIQacFO1ERZ4UWknzFnTZoUv/2Zz/SlAj/FsI/87ute UcSZzyAwpx8SxcSyEozvyHXuSXM9IH66c/8d1C5VwwLCuimn5G+/RqO5oILQ4qF7aSkUWIYI 6cGSjLKHIO3xx16Gat90MGKKYQBf/WrfYnUGEWUnPX7DvDgPizo4cd8VUB8wCG7lcPB3Gvl2 q0cj72T1LDhjTYFZooy5BaU0P8J8wDItAlfCJvhm0oKZUZYsiHQRkpOWsyzyUZrthQBjH0E9 aRGkT+LBwtsPH3DPOn2HMZKcJEtri7cdYxQTnBPPkz68BiWMvtiIpdvT6ZRv+AsbGGDwI4TJ Q6cQvrDYps0DpIh1Ss9pfT3wBCEQwxdQUhCM2X2OJRCsV4KYIxHYmdOSa5MIo2uUkK98fNR6 lzxRipBbyhHyUL1p8T7LTnxZAGMyacjkLEB4GQJ8tZBrLweCP0pAUrZIroNFWQNLFAgUDF8q 06xB3/P3b/KnTQh17I8sAB8nmgolBnmRjZ1QIJFdqKMb2epdrkF7IP+49xMFFcU3OcdQToxX Hj7JukRXsrxepd+ULfkMCihrGUk7uYERMp0T/dnXT/u1Tv5uG2WsnkaA6SSFjnreqfSMKzzJ +whKxBjDkLCkYIVh4OMWr+VBIT2YB65bOhlpwUAhOjppIjQR28t1QvCSyhjnUxBWyLN+VkX8 djr/VnPpp5ND/akgGLK+DmGxHIE1QhMbrKRJ3ka0DYwmuf4szXw8rTFj/Je+hUAfAkleQtgH ky2CAmscsCa7N9wnzL43V/8FX0F5S06mpM/ESD/Hml5PiNLqKXfGFYRFPASsS2UdKrzZhSKi ElhLkoxO6IxaqxadgADzFcIz3hXGNMoDxN8IyE7IKmkRChzeYz9wvFK6GKzdaFTpmVLBv9Jz XGfDMsL6XbFD6UKQZ+kC+cDHGqknz1dT2lDAIGQAeAAGFHhDFgRvb0TJQ9EmugoPJV4n+oE7 Hti6ns17iOxJKpf1ltuPHHDvJ+Gvpd4z5FJCXJ2SSpZfq/WNjIui9f3vV34SRRNcqF83kHXj ziE290hLGYNR4P53CzWhgwg2uG0hhBsXcBBqannIUDDw7qGQ0RHpYHQ03LVYiNxrxpolBhZC QpJgHjAd3q2kpCSfb+ffYIPly5mfW6Z9UIIboQRpE0IXjIf2TArEaeej9IRAvQjAL5j4WPhM uAljIunF8jFRLT3nUzzDb3gNllQMGvR1Vz6qpdGp9+CpvoYLQ1jSggxPZ9MTkRAoIgLIJgjP nLNJmJgL9AjLvklX2uUmygivSyXCw8OmFhg3ksbkcs8nBf9y97mGZ5p1ZQjuvhOxP0sYJuOT HQF9czK/l9Y3/AFju6+dTyvdZDqsb4MX10usAQQ75gU/n9TfJS28YSg5zXjg8dhh/EMOcu+a 55HGN32X8jH/VCLkZQyFnS7vev07Shmj4dLqOAgonCME0RmwmhLGQuw1eWCVRhDiGysN4YLV Og1CVOkz5MHgIQ0IIYtYbiw2pQtTcd/irWHQsm6q0wkrGDsUITQSG87k4kIoTN5d5GnigALO glZCElwRTDN9pSUE+oMAfIIwYqygpRNsUtEqlzY8Cb7D+1hUWR/G+oRu4CHl8Ci9xpoKBD3w IXQm6Q3vdkW1FCv9XTwEkB34MB9mueOp1xx+wjxZib73vXiTDebPavKQv4+Bu1J6rDM699x4 yQLnUiW9Mf4+SgnrpGrxQX++v99Zp1+uXOUMbRiOkAHZWRyDNHJi0oBULp1Gr7mBynewbvT9 ep9n9/NaSm4rcK+3/Gk/l7syxvkZHFrItxO7CXHeBp+89/b3MpR+w0zYVp/OTlHZzhRBhr9Z NI8bHiboA6aeTpN8BouDn1FB54dxuVJWWhb+Jl8UBRbOpuX9K5dPUa6BK2GneDvZqQdBspal LY2yI/Amt/5NI02lUQwE4C9rG/f37aEpFdtGc40Pv4tAbjFm4w54D9ZmQk5QGJKeGsKRCF1O rp0oLT/jCN6BoMZaEjYGwsCRltGqNL92+xtFF74OsRGKjDAxFvq3+AgwtomYSYhSmRea/PBq sFa1lFAUYKHwGDwrrHF1+aj0Wf+bHYsJeyxHPT2xgYQNRroxVBglFfw8OguMUFCTmHIAdRZy EdhjtEPRzYKY45K7eVfKI1nXSs90yvVcpQ8OLeRk+TttGxVOlHeFDCHoPttr+V47BIPzNYpA eNkQYiDic53hUTwYEi5zlAV3s9ZTbH+GEEQWWbIDDoQw5Ts/xlcq/0sH7hZBCuUUJRXPI8zY 18pURkd3hEB5BOAxd9mWpZfZ9l0P2p658CIMPxzu+FtblMXnddN6imAMgqfAK+j/TMSMd8KD MOagPDjBk1DICF2uRPAwdhcjNBEBCs8+/EsUIwDG4A3O8Bjn58JHCBQdAcb0pEl94Yl5lJcx Am8qt24dRQH+RDg1v3mmlqzCBkPs1pdU7tgtGU8Y51Sxlh0jdDeSG+Uw2mP8h1gmU+pNShr5 46ea+5dwV+aJ0rVizaWqt2shkJsyhpCzyGLPbrNdL1601YHXX3+9dbAFkZV6hgUGP2Ij8inb 3uZvto85J9IXgWA6rFdiC3Ws0xCTNpYIwgvZ2QdhB6aI0lBNKOJdX+/F4EEBIxQPdzMMi0WQ WJNEMbPHcwhOYItizMYFfIuEQKMIwHveNOngVXOB7GixaLfavrzzzIyLh+xPFouxoWknW1sc LPzHvWP+3WheaT4PG2Q3K/o9i8jLETyFcVKJUNgwYsC3MALBY6p54Cul06nX4S94w+URy7eF MYaImkeg2thvPvXyKcBLyoloyEiuKGDw+fWv47Vs5VOJr+L9IS1X7pj3Of8LuYi1WknjU7V0 OvUe8icHdSODwrfZbMh3lMyqzpx7yzmUWXjcsipzJ6SbizKGMITgQ3jicRboOmnSpEjomW/m ELxjCEF7mjays2k4Y+1gnLcYkUbuOWsV0K5cwfD4EJ6IJRrFC2UKlzxzCh4yPGWl6zlKy03n ZntZrEYwG7ciwcB8Y5DSd7rxb8eJeHKoFRNOnHNn/1uksOCskIb3jDBz7kizeBxtpxcfYNuB wVf8EFWUtMU2mDEQoagtN0mDd/CS4b3HgNQqQkghe6zRlQhFwncYq/QM7JSDSVl3yRlmLvhU er6brsPjsQRLN8in1RlvjKuX7GCookTB5FPzbHLxaJtsUi+fKvKOe2p4gp2fIRQFBHmITTUo Wy2ZKH46lqX4TWg2yh7GbikDsZxpfotIPuSQZTyJjWz24fg28o18SzSFK9aNvKtn+49ALsrY 26bS33333RaaN9cG2PAoJHGY9aiNTYqAIaN83WRHw8+0k0gJJVrLzCV4x/CYfdf81bdzRHcL yHcn4rwM1lxgqcE6gULG5I0liOu40X1zjWrFpIOz6xECADsBYY1FMIJpkaYoRgBrELHKMGUU MpRXUXoIMJ4YV9+3LZdQRFA+OpGo11JzfRCaiMcdg9DNtlvDduZmhfdwH2ULLxk8B2+98x7C pi+66KIwa9aslkCDoYfQndmz+wSVcgXBoIP3qxrBZ1DqMPhgNMp6Mq9WlqLdo+u70a1oZevE 8rAUgXF1hcVBuUGkE+vZyXVChjFxLSJ4CrsnXnppbNTwEGjkmX//98qbc1TCh/Vj/Tn/rFJ6 7X4dz+Fpp8XyIdj4FvZZ1gu5t9bRBVnmn0wb3oxy2KEiSrKqocY0vsqz/foDgecdQ7Snpyfa oOM502xgyP9kh2J4qAIK2UmmqWDBnjx5ssWqHmFKz9sWe7yHdcTTTHgY1q+8m33JLTMIRXQG lC/Otvj0p2NFwYuFZRrFoRaxWxeLxTk4GgsHih1CF2ePsT2tqA8BPI8ouuwUtPnmfdf1q3kE GFfbG7Cs37zEFi52soUaHjNmzBgzdqxvltsb7PDT52x95vsiDxiKGDxnH7OMYBCCR8GvEBIP t11czuTQlhYRkzA7uBKi6AJOf4uCwobBh0NOW1il/hY/0/fqXUieaSG6KPFDLN6WD96xH9gh UZ3MexppVrz1HgmE7AM/IlQa45AThqWiEPwEgqcwhvBkoSgwZ0N486t59OOn4n8xuA4eHG+j zrb5yFiiGIHPfjb+JrqBvQtc5swSH9oti92q+1NmlvAQTVagrt+fatT1TubKGMwWhnKySRWE KJx99tkWFrJBuPLKKyOBB6v0QQcdZIf6XRMx5gNNS4ER8R47nLGeo5WEEoYXDOaDhm5RlBHj oEz8hvww5viv2v+azBcdWEwsMDukcQK7aHUEUMgIwxKliwDeaT4YSVA+OpXgIQg4+9n2o/Ae vF2EK/7RDu16j+1p/orFxBxjJ61fZ2cngMNE4/rwHsi/W4XNY4/FE5CxxtRIoXirQ0koKBO+ KF8E2DhHFCOAwYilGnjt+Q0fQkaCf3GNe5uaxoOByAm2zfyIXJI3GUuNiLz//OcQPvjBWI7p bzn23z9Y5FS8SzRpd/s6sXI4YshnN1xXdss904nXqC/Hjaycljuxir11ylwZIyeYykLzZyP8 /astWsDyw2+ULbxe61gcDWFDEEyI+xDPtJp83RLlwPVezmrTiDxLlVhQjwLGQkwxnla3cPfm z/qoTid4Dx4wlK0vfelLkUeMa3i/4DVcP+OMMyIYnC8VARMEHbZ9FgkBIdD5CBAuzppWNjW7 8cYb7Vid08MTTzxhAvjTZuz9WHjMrDN4xjBsw7PWWGOIRRfV731KE0GO10GOsWW2Vo4+43R/ 8yD6hbM9iRJCMROtjgA+Cc6f7UZqRZgiy6SQE/KkXJQxrxBudxQwJ4RBX0y/3kqtBCGpCDuZ eRnxYtEmrGFi4SpnLzRLMDLWcBRA12y2KnpfCLQNAnjHkuTKqBt/uOeh08nnWvGboy7Gj29F zspTCAiBvBBA/oHnsHkZa1ofeOAB837EsX4oXWx0crltL8g6V0LLuYaMdNddM804vLPJTxix zb2bM+FlJ0QRBarZI2cIQcM7PWeOlmtUa0YUX1F2CCAH3H///ZHBliULO+SxQC9RHRtK+RIC kH/I2bXP5LV8S1Q9NxQxNHPC5VDG0iLCY+rdaSitPNspHXBf6SBtp2KrrEIgFQSISEr7qAsZ f1JpGiUiBFJBAOs7m5ZdeOGFUTTQM888YwrJnGjHaTcU4dX/kG3jzNmI7PiK4obQ+MQTc0wZ esl+x2HVqRSogUTgJdi20jgSgtDEW26JN+uqd51ZA0XVo0KgLgQYVw899FA01jCC5O0UytUz VhciBXvIrRFYgNIiosM4yJiNO0TlEUARUwhneWx0VQj0BwGs2SIhIASKgQDCH8dpbLvttlFI 4m9s7/KjjjoqWtLB0Ros0xgzZkykhPEbLxpKGks7PvrR08w7NszCFltTFwzJv/1tCGef3Xz+ XgeWgPimac2nqhSEQGMIcNTPP6/cpICQYDzQeZKUsRpo4xVDMSCsMG1yRS/tdDshvU98IthE 1Ak1UR2EQOsRYJ0H29qLhIAQKAYCRAWxmyseMrxihEU9//zz0Rp6FK/NbNCOs90L7rnnHtt9 +cDeTT147/XXF1rETmt2mQY9zhM755x0lCfWQ/3iF8VoE5VCCIAAGwwREpwnSRmrgbYZqsK0 aX2HGdZ4XLdTQmDXXVNKSMkIASFgAp/OMlQ3EAJFQwCPF4LfXrYofbwtEkXRwirPN56zPffc 0zby2Tfa3ZXnirKmFRw///l0whRzlnmL1gVUnhoI4Ayx4dDxJGWsRhOzu4/tvm/hBDUe1G0h IASEQEERYDJjUhMJASFQLASwwKOA8SklFDA+RSOWWXAYsUgIZI0Au5izrrDTqQuq2FwTsm6J g1dFQkAICIF2RYAziVh0LxICQqD9EWDdeSt1NHmz2r8PtUsNJk2Kd+1sl/L2t5wpbkvR3yIU /700GQ9pSTAqfpurhEKgkxCwc6/tWJFOqpHqIgS6EwGMKmwnf+SR3Vl/1bq7EEhz87wiIyfP WM6tgyLGrkFpbAmbc9GVnRAQAm2KAAvuRUJACLQ/AoQccy4XG1+IhIAQ6AwE5BnLuR05q+zr X0//DKGcq6HshIAQEAJCQAgIgRYgQJiiSAgIgc5BQJ6xnNuSUCGFC+UMurITAkJACAgBISAE hIAQEAIFRECesQI2iookBISAEBACQkAICAEhIASEQOcjIGWs89tYNRQCQkAICAEhIASEgBAQ AkKggAhIGStgo6hIQkAICAEhIASEgBAQAkJACHQ+AlLGOr+NVUMhIASEgBAQAkJACAgBISAE CoiAlLECNoqKJASEgBAQAkJACAgBISAEhEDnI6DdFDu/jVVDISAEDIEBdnokn3fs1FQ+ToMG xWzw7bff9kv6FgJCQAjkhgA8aK211oryW7p0aVi+cu/6IUOGhDXWWCOssMPFlixZklt5lJEQ EAL5IpC7ZwzmMnTo0MC3E4xo2LBh0ccFI7+nbyEgBIRAswgMHDgwLLYT15955pmwbNmywN8Q AtDcuXPDCy+80CsMNZtXnu8jpLWTEklZKXM7kLBth1Zq/zLCi5599tnws5/9LFxwwQXh1Vdf 7TUc/eUvfwnnn39+mDFjRnSt3Wo7ffr0sGDBgrYoNrjfcsstbVFWCils26ap6ipo7srYlClT IoZDR3JL9SuvvBJdgxHxm+tFo9deey1iiEUpV9HKAy5MGJSrKKTyFKUlWlsOLMsoYtdff324 9f+3d6YxtxRlAu4rEAzuIAquV0VRISKIorjFXXHFqNGIiYlxSTDGX/4nMWGSIY4Jzk81uERx RY1KXBITV7gqcgVXDEhGwxIkUWDGweHO95R5L2XRfU6f+53TXd3nqeT7umt/+6n1raru8/3v N1/+8pfTKvMRRxzRXH755c2ll17afPOb32x+9rOfNVNbDPrTn/7UfPKTnxwX8Aq5f/zjH29u vPHGFWKMF1S247Hftpz/+te/Ni94wQuaU045JfVFLFZT/37/+983b3vb25qrr746tRvmRvRn +WJ2zaz27dvXsNM3BcPOI2PAVIxsN1dSY8wDBjumGBOiBzzgAc3Tnva05vOf/3zz2Mc+ttm7 d2/z9a9/vTnzzDMTWe7f+c53pvsxgHQVLw31pz/9afP85z+/K8ig7rXJw8PD58QTTxyUw6LM lGcRnSYN6LTLuRtWnvl72ctelvqcCy64IC360P/85je/aZ773OemY0E///nPmzPOOCPt3Bx5 5JGTwMKJgikdX0LW+9znPrLdAIEpsWUeMJUd0g0UVUqS52dnnnnOySef3NDnXHXVVcnOMWoY YVg8Isz97ne/ZL/tttuaK664ojn22GOTveZ/7Pjt37+/Oe6442oWM8mGrPxRBlMwst1cKV17 7bXN4x//+M1l0JLyIMpYrOSwEv3MZz6z4crkKN7feNzjHndw1+mJT3ziwfc5AFJLw/jzn/9c VUOtTR7qVnQO7G7WYJRncSmwQ3H77benldbFIafry6SGFeb73ve+afJCn0L/88AHPjApYCwG ffe7300P+JSnPCX1PUyKfvSjH01isnjrrbemPnIqE9sf/OAHDZPJmGjWXLNku7nS4QQFbXMb FoO6KKKIsTP/q1/9Ku1+3XLLLaktv/a1r01s6JsJ86pXvaq5+OKLU199//vfPy1mf+c73+lK tip3XknhqOUUypk+lLHhM5/5TFUMu4SRbReZ3bszPh199NGDzgE2rozRCNmm/tSnPpVWf573 vOelbfjTTz89rZbgj2LB6jTmyiuvTFdAMIGqpWHQUJmkKU8qntZ/8PnezvHTWjpe5Wktpn9x ZJd6Su8c/YvwSyzUwzvvvDMpW0996lPTu6ooA2984xvT+6nUj1/+8pdpJ55w9FH0Q6w4n332 2UlpWJLF6N4MGk94whPSMczRhekhAOzzDxT0iDJaENluDj1sn/3sZ0/mCNsmSNDvnnDCCc0j H/nI5o9//GPz2c9+tnnpS1+amNBG8Ge3k0UBrvRnKLD0UfzhX8tYG3yYJ7GLx2I7hg+RYMed d3VrM8gZH0thPIAnrHEPv1o4IxsbGMgDUxR1ZGfsQonE1MA4rwPIx1/tbGEZ/Ch3eP7tb39L PHO/FGhD/zaujEXBvPjFL07K1cc+9rHmjjvuaF70ohellR46F0y8a0R4/uis3/GOd1TTWdMQ aABU/BpMXrnHlifKmEoLH/5qGCRoVJjobMfilPOhvtdyhp46RFnxvsIcDdx5t4Jjz7wzdt55 5yVFi5XaZzzjGem5UdI+/elPp8fnqBBxWH0+7bTTUj8V/VNNfGhbLFQhK4MvAzR9U0zeapEV +RjUaIdMcFjJjT6UescRSwzjQS2ckRFZMbUyhisckRUDP/remtnSDqOO0v/BlvqK7LXW3wR3 g/8oR+Y5lN1ll12WlDJ27ilX2s3DH/7wtAvGu88cnz7++OMbds94f+wRj3hE6qfGHttKPPRN TGL5IBL3HPW65ppr0j2LRrT7WgyMGReQk/rJcUrun/zkJyf5OVFRC2fkov3Aln6TMbtWxvT3 fAyFkzfU4WOOOaZqtvQ/bAJx5TUbZM/Z8ioD/Dddf/f81/XXHLhjZzv8ttv/u7mr2ZxuRsVn kONdMSo+BcYuGZ0LFf4b3/hGaqO810EHBQAMcMZuwHlDoKOkEx3TUGno4DA18KEsWb2jAtP4 KD8G2jENZcQgx5EolI4xDfUHOeCD2btzNA5mYxra429/+9skAquzm5wM81bakYf/oznplDPu 8chXX3lZ8/d/7Kyc3sNnfQ7wpz4yuDJ5oW5QTxmIH/KQh6S+hjC0JRaF+MgQ9pe//OVpYjR2 e89JIBeT2a9+9avJmaOV9I/0l8jPBwBqmaAxebj55pvT1ypPPfXUdCSLfouj6NQ5+vyaONNf /OQnP0mTMdrnV77ylSoZ0/8zbrKoAOOzzjorlf/vfve7KtlSxigbfMmUsueP96Awm66/i/qe JMCSf/uv2Nf87107H81YEm433vQvzIkYp+iHWWDBjT4LN8oYd47/w43xlcn461//+ur6JxQF PsSG/A996EOT/JQ7diazfBtg7PkcZUX7Zjy+8MILmw984APpqCgfS6GuMjbgx7utNXBGJsyX vvSltIHxvve9r/nIRz5SJWNkZZ7Ptx9izs9JE75YTB2ojS1ti4+2cFSYcZNxinva4BD197Cd vvzwPXc2//4f/9kM9tlCGiAP/q53vSudj37LW97SPOhBD0oTCDqic845J/3xLgdfPPvxj3+c /n74wx+mQk21ccR/X/ziF5vPfe5zo0/sYYgWz+AGo7H50PiY1PLezXXXXZcmMHRg0YGMVWQM Cnw9jy/NxQryWLKQP7JQXihANPox+dBJclyP9xV+8YtfpPpEvZqrYRBg8EUBiMkgfQ4rdnS6 uKHIUCYoCCwO8cI5X1lkgl6TYSKOgsPnojltgJ2vajHJoU+o5Wu0sGRQps9EwUF54AMpyMnH Bz7xiU80j370o6vhHP3qRRddlOSGY62MKXOO9lNvH/awhzV8oZJV/RrZUg/Y/UKx4H1x6iqT HVb4a66/Q7Z5GLHAwrjJoh19EvMl+i3aEG74s2JPP/ae97wn+VE/iVuLiUUC+ifq4mte85p0 /JIj39yzYESYWgx1kDEAg2wot6973evS+8IowTVxph4wZjF20zfVyjjGWsr73e9+d6qnvH/9 hje8oUq2zMXYvUUvQUYWuGhnY9TfQVsGBUWHQyOgg2G1h06HK3b+MExYaRT8jd2AY1IRK1Q8 w5iGysMHTzh6ReVBMUpcJr4AABdHSURBVKODHstE42N19ulPf3oqSwbfMQcJ8kYGlI2xO39k YSLKlv2znvWs5pWvfGVacRuzHsGEVUDeO6DTYVI39k7mEPWXSQ6TGq7wpy1hsPOHYdCDR63v YTEYs3OH7HwtFCWChQd2GFD6a1h1hiN8qWccR2eBDe6sNIecjAE1cYbnYx7zmKQw0J/WzJi2 yvFa2u7evXvTeMqxvxrZUg+ony984QvTO+PUURY8aq+/1OHaDPWS8SQWO8ce20o+yMZHR+hD UbhZCKVfxc54XNPCFm2IUwQsujH/RDZk5C8Wb2vhTBui7+SoKnWgdsaMSfRHvI8NSxaM6O9r ZctXShk3WTR80pOelPSQMervoMpY2Xi77HnDGLsBx2BCQ6ih80OeOG/PigMfQhl7Is0EkXLi bDuDLB0Hco5lkIddAlZiOYY2piyhGNIR/frXv04fiaBjwn0sQ96UE0fd2NFEoZ/zztiqnBmc x6wzi+SlrfM+G7sKrOqy40rbQ+baDHLx/l3IBtO4pw7WxBnZ+GgUZgqM4ccCDztNr371q9Ok t2a2TCK/9a1vJQX8Fa94RVLOaq+/tbUn+mzKmPGfa5R3LXIiDxPb97///c173/veNMZw3A9l nF0dFmRqMbSffBEO2ZCRP0760B/UxBl5UGpRGuhTa2ZMW7/pppvSYvib3vSmpECymVErW+b1 zF2ZK7JYfu65545Sf6s8mxQNg4ZbQwOOhkBnWIOhsvNL8ZzFZbclVnDGko0yopOggzj//PPT TtBYChmdLJ0pP+LLYM9xHnbtYEY5Dm3yAYpVlw9+8IPpmMGjHvWoUeSJ56cuv/nNb07vH3z0 ox9tnvOc54yu1IdsY15RSvlJBCbkNSqo1GGOdzO4MZnATn2/bueIMFfqeS0G2egX6B9gyYJE yImixrskPEMtnGmrTHhoGzBmUadGxkwe6Nf43Dk7Tqw+s1peK1vk5Zg/7xUz2eEYEBOzGtnW 0nZKOaibjPew/PCHP5wWYKijY4xppWy5Hfm+9rWvpdcVaD8veclL0heokZOF41rmUMiMTDFP 4V0hjlQzf0Bmvm5ZG2f6duTF8E4W77TWxhh+9Pcf+tCHknLDNyJ4BYArpja2sYnAu5h81Iv+ n/Gfheqh2Q72AY9UEj3+MTDzQh3vFWBoJGN/fpsOhlVI3s9C02cQGctQQZCDwY1jgVR0GI21 OxYrTHTAdLR0cBwvZbI41kDBwMXuExMW6tLb3/720fnQeTIxrYEPbYz3d3hfDFabbmPsAY75 AY++bZV2zoQRRZ56jRLPKuRY9bhNbmRktZnfGWJw5jeIOFLBsVOOVjKgUKY1GGTlvRa+EMdE jHeB//CHP6TdEc7p0yZq4ky7iB+K58j8t7/97SoZMwbw/intl485nHTSSUkR53g/Rz9rYhuT M94RZNeEyQ/jFnWB+rHp+ruo7+nTRob4gEcfOQhDe2fBhV0HPi6AQluTchMysjDA0XyUR/pP FgmoB3zCf8y5Uxtn5k1wZb5y/fXXJzn37hz95UNOvJdVE2fGIcobWWtmzPjDOApb7il3Pp6F qY0t9ZK5IgokihgLHNQH3ssbov7mH/CoThmjwBhsovD4+gqT2LFNNISxV3GpPEwUqDz8sZU+ 9oSRysuqd3TANQwSlBNlRt1BvjEn1DXyGbKNLZoQDfE1xVX6DsqK+ouJXZJV4g8RtpSRsmRi y8CHzDUZ5EI++iq4YmdCEZMKZK2FM30EMjJhRM68HtTEGDmZkPEHx+jjamXLmJUf+UJeZI+y 3yTbRX1PEmDJv5qUMUSljPmjrfNXoylljDnTWAvGixgFS8LkcpbPsCiNIf1C3lK+XPYh5enK K+TBnz6KMQtDHShlTx4j/gt5ECHaVHDGHs+yifqbK2NVHlOks+alPwz3NRgGFFb1orDGkomB mBVGVkQxyDO2TDQ2jspw9A5ZsI9touHQkORzz9KosY3dU8rhXai7rDrWbEoZa2hvXbxoeyhi mFJRjDbaFXdod/r4kLVmxsiJwpjvMpTjZE1sGbNYfc5NLl/N9TeXuYZ72tPY49kyDqWMeVkv izu0f84yl7N8hqHl6sov5C3ly2XvijukeylPbi9lH1Kutrza5AnOhM9lb4u/LrcqlbEhAawC Mi+gVeKtO2xb5Vl3HqumV6NMPINl1l6STOiYJDkRauejqwQkIAEJSEACEhiCQJVfUxziwc1D AttMgB1D3j/QSEACEpCABCQgAQmMR0BlbDz25iyBUQhwpJSPJ3zhC184+JsqowhiphKQgAQk IAEJSGDLCVR7THHLy8XHl8CuCXAUkRdROfPMThgv0fJ36aWXNldddVV6ib5812TXmZqABCQg AQlIQAISkEBvAu6M9UZlQAlMiwAKGF+55GtlvEDPJ9D5TTq+vsknXPktFZQxlDaNBCQgAQlI QAISkMDwBNwZG565OUpgrQRQtvgYB7tefGGNe3bE+CFDfufprW99a3PJJZc0Rx11VHP55Zc3 55xzTnPaaael36biC6Hujq21OExMAhKQgAQkIAEJ9CbgzlhvVAaUQH0EUMD279+ffqBy3759 aScMRYyPc3DF/y9/+Uva/Tr33HPTlV+Yx50fi80/j13f0ymRBCQgAQlIQAISmDcBlbF5l69P N3MC7ILxu3MXX3xxc+211x78cVV2wc4888yDP7DIUUSOKnJFEeOT//ymkkcUZ15BfDwJSEAC EpCABKomoDJWdfEonAQWE0AZO+6449IP6h577LEHfy0ed35kN37/jStKG1d/W2wxU30lIAEJ SEACEpDAUARUxoYibT4S2ACBOKZ46qmnNjfeeOPB3S+ywu/e9753c/TRR6cdsgsvvDBdjznm mPRe2QbEMUkJSEACEpCABCQggRUI+AGPFWAZVAK1EWCX68QTT0wKF8cQeU+MXTH+HvzgBzdn nXVW2i07++yzmxtuuCHtonGE0d2x2kpSeSQgAQlIQAIS2EYCKmPbWOo+82wIoHRx/JD3v9gF u+uuAzvPxl+z8z7YvZLbnXf+Y+fHnY9qTjjhhB0lrL5jindLnMT2nwQkIIFqCPDDH/74RzXF oSASmCWBw9ML/Tur6ayo7/xE7Cwf0oeSwNwJHLbTfjGH3eueU4fDD8PvQHPXzi4avhGW8EMY 8qR/6TJH3OuuLi/dJSABCYxG4LCdvok/jQQkIIF1E2Be9H9pAX1nweemG64/cOsttzT/8/ed T2HvOWzdeZmeBCQggZ2e5kBz8ilnSEICEpCABCQgAQlIICNw+Pn/dkFz0823/HNnzL34DI23 EpDAOglcdJHK2Dp5mpYEJCABCUhAAtMnsGfnnZN/vmAy/WfxCSQgAQlIQAISkIAEJCABCUyG QPeLHJN5BAWVgAQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVsBoXo I0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTGZlCIPoIEJCABCUhA AhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAEJCABCUhAAtMj oDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj0yszJZaA BCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCABCQg AQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVs BoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTGZlCIPoIEJCAB CUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAEJCABCUhA AtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj0ysz JZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCA BCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZA QGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTGZlCIPoIE JCABCUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAEJCAB CUhAAtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj 0yszJZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEAC EpCABCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCA BGZAQGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBA6fwTPs 6hH27NnTGf/AgQOdfn08Iu3dpkNe60yrj+xlmHXmv860gs06GJfPrF0CUyKw7nY1pWefqqxD ltmQeU21PJRbAkMTGLJdDpnX0Bynnt/WKmNRKRcVYIRxor+I0rh+UUbjSmHuEpCABCQgAQlI QAISWJ3AVipj5QS+TdnKw3DfFmYZ7kOJ05XmOtPqykN3CUhAAhKQgAQkIAEJSGA4Alv3zliu ZKHgdCk5pV8eb7jiMScJSEACEpCABCQgAQlIYK4EtnJnjMLsUsLKgiZclyIW7mWYSDv3L9MN v3BfFifCRzjilW5hL9MMe3ktw+Ofp1+GX9Vept837TJem1xlmNxe5pP7xTOUYcLdqwRqJ1DW 5751uYzHc5ZxI0zpHkzwX+SXp1mmFfZIqysd/MuwhxqnK49IP/zDTj7hxn3uXvphDxPhIm7Y wz/cw973WqZDvGVplXGWhe8ri+Ek0EYg6hv1LO4JV9a73C/SKcOEO9e28LivGqcrfKQf/mEv 88jdSz/sYSJcW3qECfcI3/ca6ebhl6VVxlkWPk/b+3EIbNXOWFlBV0XeFb/LvSv9tvBtbl3x 29zb4re5ERf3RX5t6a/q1pb+onw3Idei/NrkW/UZDS+BoQm01dtF9Tzka4uHX5d7xMuvETau ud+y+7Y4bW6k0+Xe5Uf4rjhd7iFvW9yIE9cI25V/7t8Vpi2tMl5p74rT5b4o70Vxyny1S+BQ CCyqY11+q7ojV1sc3Nrcu8Lnz9cWN9KKaxk+t7fdH2q8Mq22dAjT5d7lR/hFccp8tQ9PYCt3 xlZdJSD8sorcN808nTzObhpLpFmmFw2zzR2/3D3CxrX0w72vCXkIn6eTu5dp5X55HMKFH9fw i2v4hT3SDXfsXX55ehHPqwRqJdBVp3P3Ntlz/7wthDvX3L0tjd24RT55HuFW5h3u5JeHxx5+ eZxw6xuecKXJ84n04trll7vn6R1qvDwN7iMd7vO8wp1r7t4nDmE0EtgkgbJOklfUWe5z/3Av 63K4l+Gxh18eJ9z6hidcabrkIlyXX+6epxfy5P7hlsudx2m7jzj49U1rWZy2fHSrg8BW7Yxt CnneUPrmUcYp7X3TiXBl/NIe4eLa5t/mFuH7Xrs6A+L3Sb8tTJtbX3na4ra59U3PcBIYg8Ch tqu+8SJctI2wl88a/qV7hO/yL91Le5lem3+bW8Rr82tzi/BxLcPk9vye8KU90iivZbjcHpzK OLk9whAvj0uY3B7hcM/v8zBlHOwaCWyCQFnvyCPqJX6lf26PcLlcuX+4t7kt8lsUviteHie/ J3xpjzTKaxkut7c9axk/whAvj0u43B7hcM/v8zBlHOya+giojA1YJtFYyoYSInS5h3/XdZV4 hF0lfFeey9y78ljk3uW3LK82f9JaZ3pteegmgaEJdNXpLveQr8u/yz3ixTX6ri57uLdd++aR xy3zCz/SytMr7RFurGsuWy5Dl3sepu/9orS6/Lrc++ZpOAlsgsCiemkf0E18Ebcuvy737lz0 GZLAVh5THBLwFPLq6vTGln3dcq07vbH5mL8E5kaACUO007jGM/adTJTxIv7UrnN5jqlxV971 E1ilLtsH3M1/FW53x/JuigRUxqZYamuQudZGvm651p3eGtCbhASqJhCTIdpO3CNwKEPh1uW/ 24eL9Mt0oi2HHLl/+OVu3ktAAtMkYB8wzXJT6kMnsJXKWEwi+mKb20BfPk8+uSn9+jJaR7gy 793Kte701vGMpiEBCSwnsKjt064X+S/yW55zPSHy56hHKiWRwOoEDqUu53HKsdw+YPUyMEbd BLZKGaNxl416leLJO4dV4tUUNp6/tmdZt1zrTq+mMlQWCWwTgbyvinYdzx/2PEz4eZWABOZB IG/f0ebjycKehwk/rxKYCoGt/YBHNOBlBdU33LJ08I/OoivNLvc+adcSZhuesRbWyrE9BHbb rrr6li73yC8Ir2qPeKtekadLplXTGiN8l+zhXnJcJGPEaQuDX+4f6eZuebwu9zyM9xLYFIFF 9Q+/3L+0b0qmTaWbP0ueR7hHW839uu4jTpt/ySnS7YrT5d6Wtm7DE9g6ZSwqLKjLypzjL/3y eHm4Q70vG0ZpP9R0+8Yr8yuft286i8K15bEoPH5tcUq3ZWnk/mVc7KVbHt57CdROoKy/pT2X P++3ynC5PQ+Xx8/D5O5xv8w/wq16bUu3zS3SLf2wl24RdtPXMt/Sviz/vCzKuNjDLQ+Xpxn+ 4Vbaw92rBDZNIK+jZT3EHm55uJAp/MLOtc0t/Es/7KVbhN30tcy3tC/LP+dRxsUebnm4PM3w D7fSHu5e6yGwVccUAzsVOK+c+X2Eya9dFT4P0/c+z7vMN/frm96q4fI8yvxXTasr/KI8cr88 fu5+KHLlcUhrt+nlsnkvgRoILKrTuV8pa+6Xt5MIh38tZpmsyJnL2yf8kM8W8uyWc6SD7H3T WhQn9xuSh3lJIK97ferysvAQJUyYPuEj7BDXkKfPsy6SJ9IhTN+0FsXJ/Rblq984BLZuZyww UzH5W2T6hFkUv8uvLd82t674u3VvyyueNfzaGv8q+UY6eZw2t2X+y+RalGab37L0cnm8l0Bt BLrq9DI52+IRp8s99+sKE+5xXSZDX/9F6bX5dbnhHn677c/6yp5zy+OEHLnbsvuuOF3u68x7 mWz6S2AVAl11dlV38myL0+WGe/jZB6xSYoYdmsCenYq6WCMZWqItzy86DItlyyuCjy8BCUyG gP32ZIpKQSWwEQL2ARvBujWJbu3O2BglTGONBjtG/uYpAQlIQAISkIAEJCABCdRDQGVshLJo U8hyRc1dsREKxSwlIAEJSEACEpCABCQwMIGt/IDHwIwPZoeSFYpYXA96eiMBCUhAAhKQgAQk IAEJbBUBd8YGLu5Fu174LfIfWFSzk4AEJCABCUhAAhKQgAQ2SMAPeGwQrklLQAISkIAEJCAB CUhAAhLoIuDOWBcZ3SUgAQlIQAISkIAEJCABCWyQgMrYBuGatAQkIAEJSEACEpCABCQggS4C KmNdZHSXgAQkIAEJSEACEpCABCSwQQIqYxuEa9ISkIAEJCABCUhAAhKQgAS6CKiMdZHRXQIS kIAEJCABCUhAAhKQwAYJqIxtEK5JS0ACEpCABCQgAQlIQAIS6CKgMtZFRncJSEACEpCABCQg AQlIQAIbJKAytkG4Ji0BCUhAAhKQgAQkIAEJSKCLgMpYFxndJSABCUhAAhKQgAQkIAEJbJCA ytgG4Zq0BCQgAQlIQAISkIAEJCCBLgIqY11kdJeABCQgAQlIQAISkIAEJLBBAipjG4Rr0hKQ gAQkIAEJSEACEpCABLoIqIx1kdFdAhKQgAQkIAEJSEACEpDABgn8P8GAOhQYuNG5AAAAAElF TkSuQmCC --------------070307070605000902040905-- --------------010706000006060000020906--