data resampling (Juan Wu )


Subject: data resampling
From:    Juan Wu  <wujuan22@xxxxxxxx>
Date:    Wed, 13 Aug 2014 19:05:45 -0400
List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>

--047d7b3a96040304b105008ad488 Content-Type: multipart/alternative; boundary=047d7b3a96040304ae05008ad487 --047d7b3a96040304ae05008ad487 Content-Type: text/plain; charset=UTF-8 List experts, I am attempting to down sample my data from 300 Hz to 1 Hz. I just tried two functions of Matlab: 1) a = resample(Data,1,300); 2) b = downsample(Data,300). The results are quite different between each others. [image: Inline image 2] Apparently, the result from "downsampled" is close to the the original data. However, quite a few persons suggested using the re-sampling method - I get this information from google searching, and very agree with this view. Personally I think the downsample method is too simple and very arbitrary. I also do not believe the "Nearest Neighbor" method. I assume that the method resampling takes both "FIR interpolator and decimator" implementation - this is what I expected. Am I right? But now my output from the re-sampling method is really very terrible. So I assume that the resample function from Matlab does not do a good job for this. I am not sure whether I need change to use other softwares or try other functions in the Matlab. Any opinions or references are much appreciated. J --047d7b3a96040304ae05008ad487 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable <div dir=3D"ltr">List experts,<br><br>I am attempting to down sample my dat= a from 300 Hz to 1 Hz. I just tried two functions of Matlab: 1) a =3D resam= ple(Data,1,300); 2) b =3D downsample(Data,300). The results are quite diffe= rent between each others. <br> <br><img src=3D"cid:ii_147d19c415775e79" alt=3D"Inline image 2" width=3D"56= 2" height=3D"189"><br><br>Apparently, the result from &quot;downsampled&quo= t; is close to the the original data. However, quite a few persons suggeste= d using the re-sampling method - I get this information from google searchi= ng, and very agree with this view. Personally I think the downsample method= is too simple and very arbitrary. I also do not believe the &quot;Nearest = Neighbor&quot; method. I assume that the method resampling takes both &quot= ;FIR interpolator and decimator&quot; implementation - this is what I expec= ted. Am I right? =C2=A0But now my output from the re-sampling method is rea= lly very terrible. So I assume that the resample function from Matlab does = not do a good job for this. I am not sure whether I need change to use othe= r softwares or try other functions in the Matlab.=C2=A0<br> <br>Any opinions or references are much appreciated.<br>J<br></div> --047d7b3a96040304ae05008ad487-- --047d7b3a96040304b105008ad488 Content-Type: image/png; name="image.png" Content-Disposition: inline; filename="image.png" Content-Transfer-Encoding: base64 Content-ID: <ii_147d19c415775e79> X-Attachment-Id: ii_147d19c415775e79 iVBORw0KGgoAAAANSUhEUgAAA2MAAAEjCAYAAAC/9tlMAAAgAElEQVR4AeydB6BdVZnvF0kgFQih hR6KtFBDDy2gtKggo4CKMgHBpw8Vx3m+ZxlHZtSnDpYR9aFSjAiIgKCAQgiahCaEGjGAoV1qaCEk QBqEvO+3d757d05OvWfvffY55//ByTl3l1X+a61vfW2ttcZzTz++4o3XF4ZX5s0Lb7y5KAxYY0AQ CQEhIATSQGDFihVhwMABYeMNR4Vd9tg/jSSVhhAQAkIgFwSeePThMGLkBmGNXHJTJkJACHQTAvCV l+Y+Fb7zvXPDIISlNQYMDOusOyqMXH/TsMYaYjvd1BlUVyGQJQIrgvEXy+CdZQuzzEZpCwEhIARS R2DhwoXhpVcXShlLHVklKASEwMABA8KQNU1GMr1rUMxlVoRly5aawLRc6AgBISAEUkUAZWzImuWT nD3rrrD07UGmsomEgBAQAukiAO8ZPOjtMHb3/fqV8AATlgYNGiBlrF/o6SUhIASqIYAyFsJb0SOD /EE0M/4TCQEhIATSREBcJU00lZYQEAJCQAgIASHQSQhogVgntabqIgSEgBAQAkJACAgBISAEhEDb ICBlrG2aSgUVAkJACAgBISAEhIAQEAJCoJMQkDLWSa2puggBISAEhIAQEAJCQAgIASHQNghIGWub plJBhYAQEAJCQAgIASEgBISAEOgkBKSMdVJrqi5CQAgIASEgBISAEBACQkAItA0CUsbapqlUUCEg BISAEBACQkAICAEhIAQ6CQEpY53UmqqLEBACQkAICAEhIASEgBAQAm2DgJSxtmkqFVQICAEhIASE gBAQAkJACAiBTkJAylgntabqIgSEgBAQAkJACHQMAgMGSEzrmMZURYRABQRaMsorMZdK1yuUXZeF gBAQAkJACAgBIdCRCAwaNCiq14oVKzqyfqqUEBACMQK5K2POXN55551V2gBFbI011gil11d5SH8I ASEgBJpAYNiwYRGfKU2i0vXS5/S3EBACQiAPBJCJXnnllfCtb30rLFiwIMhYnQfqykMItAaB2OyS U94wk3nz5oXzzjsvfPKTnwwbbLBBr/KF5efrX/96+NznPhfWX3/93us5FU3ZCAEh0OEIYAi68cYb w9577x2GDx8e3No8cODAcPPNN4fdd989jBgxovd6h8Oh6gkBIVBQBOBVyEsvv/xy4Pfbb78dlRSe NXTo0Oia86+CViEqFrwVA3s7lBVnAJgvX768yJD2lk3Y9kKR+g/6wRtvvJFrv81NGUsyFzqRMxdQ HDx4cLjrrrtCT09Pb+UZGAhGRfGUFW2gFq08tGPRmIPKQ6tUJvoQ43Dx4sVlvUWV32y/O/CfWbNm hWuuuSaMHTu2V+ni+vPPPx/OOeeccNFFF0U4IDistdZa7VdJlVgItBECCL3tIvjmCSsyzzPPPBPx qL322ivcf//9vXLRmmuuGe68887w6KOPtgXPfuuttyLFkbmm6ATfZz4E43YgYZtdK9Ff3//+90e6 SV6GhFyUsSRz2XPPPcMDDzzQy1yAE2HwySefDBMnTowYDEBw7Xe/+90qz6UNvemEpuwFy6N2yjQI EwfCWxGoaOUBExgZClBRGK/KU72n0oe23377MG7cuFWMI9Xfaq+79EUsyfSFHXbYIey///6rGHiw gM2cOTMcdthhq/TbJ554IrKMFb22jDcUR/hlOxDhoEuXLm0LIVzYZtejwHazzTZbxUOdXW7tkzL8 CiF72rRpYddddw2jR48Oy5Yt660AuKGcnXDCCWGjjTbqvV7UH0RBIddtsskmRS1ib7lQgImcOOWU U3qvFfmHsM2udX7+85+HV199NWy66aaZ6iDJGmSuWcBcEISmT58edt5552hQwlwQBLlHuNDUqVMj qzXPbbHFFtEzAIGAccYZZyTLm+pv43mmXAUrR+1kn3vuuXD99deHU089tfbDOTxRtPJQZTrw+973 vmiSzQGCmlmoPNUheuGFFyJP0b777tuRyhj8ZcmSJeHSSy+NBJvx48f3KgHcwyOPt+zxxx+PfhNC jYDD2Lrqqqsixa06gq2/O3/+/PDQQw+FAw88sPWFqaME1113Xdhtt93CuuuuW8fTrX1E2GaH/2uv vRYpFR//+Mcj5Ty7nNorZeSiIUOGhNNPPz1SylDMMLbAryDuEzHEGFpvvfUKXzlkPsK/WXpSdBo1 alR4+umnw0477VT0okblE7bZNdOYMWOyS7xCypkrYzAPhJ5PfOITEXNBEYO5YOF58803w5w5cyJB aZtttglXX331KuvIACTLgXHJJcGsNiHYGKxJrG/DWp5leWoWIvFA0cpD0Zw5bLjhhomStu6nylMd exSPm266KTfLT/XSpH8X3kPICV4vBBiMPXhluI6Qs3DhwugaFvrbbrst4LXHU4YCh+L26U9/Ov1C pZwiC/wvu+yycOaZZ6accjbJgS2CZjsoY8I2mz5AqmxI8e1vfzu7DNo4ZfjTokWLohqghHm4lC/Z 4D58rB0IZRvlsh0ImeqjH/1oOxQ1KqOwza6pkBXypsyVMSpUylzwnqCQwVywmGDhYSDgBUN4ciD8 OytQXnwxWChSfcoYVpOTTz45q6I0nG7RykMFwKdIjFflqd6tXDGp/lR730W5wtsOr8EQRJji2muv HSlcrBXDK3jIIYdEoZo8h5KGAJSlsMP6cGQpi9hrmuCjBx10UNPp5JXAoYceGhni8sqvmXyEbTPo VX8XQ4h7e6o/2d13kZ187Ty/242IfGoXwkFAGHW7kLBtl5aqr5y5KGPJosBQ6EQIR3R+lDGULj4I 8m79Sb6T1W/Lvm6BiLIWqfMXrTy0UZHwUXmyGjXtl64bdeA9e+yxR6Rw8RvPKRZoPPR4vFHE8iCL ggxTpgQzPjWf2zrrrBMpks2nlE8K7GTZLiRs26WlOruc2uSks9tXtRMCIJD7OWNkCnNBGOKTZDR+ nWfyIDMq285EsXcsj/yUhxAQAq1DwD1eGHzgPa58Ja/nUTrLOrz0Urx5UB75KQ8hIASEgBAQAkKg uAi0RBkrChxs3mF7cgRbSywSAkJACOSCAEsoLr442Jq1XLJTJkJACAgBISAEhECBEehqZWzu3BCu uKL+UMUCt6OKJgSEQBshwE70tjRNJASEgBAQAkJACHQ5Al2tjLFhCl4xCUVdPgpUfSGQIwKEKdpS L1urlmOmykoICAEhIASEgBAoJAJdrYyhhBXkDOdCdg4VSggIgfQRwAh0xBHxJh7pp64UhYAQEAJC QAgIgXZCoKuVsaFD2Xa/nZpLZRUCQqDdEWDjINtDxHaQbfeaqPxCQAgIASEgBIRAswh0rTLGOT+3 3x7sXDPbUrJrUWi2++h9ISAEGkXgnntC2Gsv7abYKG56XggIASEgBIRAJyLQtWoI6zWmTmWb/WBb XHdi06pOQkAIFBGBhx4KYexYecaK2DYqkxAQAkJACAiBvBHoWmVsyZIQvvzlEPbbL4Tzz88bduUn BIRAtyIweHAIeOa1cVC39gDVWwgIASEgBIRAHwJ20lZ3Eus1ttsuDhVii3uREBACQkAICAEhIARa hQAH0HMgvdMAW0PBh4Pq+YiEgBDoTAS61jOGVZpQxd13D2H99TuzcVUrISAEhIAQEAJCoPgIDDaX eVLhGjhwYFhiITzPP/+8LaV4K/C3SAgIgc5EoGs9YzTnsmUhHH10MGbXmY2rWgkBIVBMBGTkLma7 qFRCoBUIoGj96U9/CvPnzw8nn3yyySbLIkXsuuuui36vaTuNHXfccWHEiBFR8bTpWCtaSXkKgewQ 6FrPGJDiHVu8WLuaZde9lLIQEAKlCBCFxLoxvtlASCQEhEB3IkAIIorWokWLIkVsqS0mJVQRIlzx yCOPDGeddVZ0/5VXXonucX3gQDuXRyQEhEAmCAwZMmSVcOFMMilJtKuVsRIs9KcQEAJCIHMEUMC2 2SZWxF58MfPslIEQEAIFRACl6/XXXw9zbdH6sGHDwuGHHx4GDRoUCYEoXIQtbrjhhuGpp56Kro8c OdKUsBXh5ZfXCmeeOSNcfPEvI69ZAaumIgmBtkOAkOBf/epXtqHf+eGvf/1rWIsDQXMkKWM5gq2s hIAQEAIg4GFGeMdEQkAIdB8CKF7/+Mc/wo033hgpVYQm+uYdCIKELr5pC9tvueWWcMIJJ4R11lkn ur9kyXITFDcLu+22u9aRdV+3UY0zQoDxuNtuu4U999wzjB492qJW8g1bacmasdIdg8DWF6fmDUBG 7apkhYAQEAIVEZASVhEa3RACXYEAm3LsZ2frjB8/PtqgA0WMsEVkob///e9h4403Dj/60Y9sg7H1 w4wZM8Khhx4aRo4cYQrZO2HrrceEPfbQzmNd0VFUyVwQQBlDEYNuv/32VTbTyaMAuStjMBoYDlYg j43GCvTiyngd3PLJHYXyAEF5CAEh0B0IEA602BaKugUaBsyaDQjhyK93BxqqpRAQAq1EAJ7DB9po o43Ce9/73mjjjjgkcWA46aSTIgs9MhFyk/Ont9+O32ll2ZW3EMgLgb/9LYRttw1h+PB8cvQxmU9u cS65KmMoXwsXLgw///nPw6mnnhpZfGAw999/f7j77rsjZrPPPvvYdvO237xICAgBIZAiAhiCfv/7 34cDDzww2pUMfoQR6IYbboiEnCOOOCJsscUWKeaopISAEBAC9SGAYYhQxLftEFQ3Su+88869m3aw uYdICHQjAtdfH8LHP56fMtYKjHNTxtwj9uyzzwaYimueXEcZwyI0dGi8QxChiliA2NFEJASEQDYI rLvuur3e6WxyKE6qCDoPPPBAmDJlSthrr73C2muvHXnEbrrppnDwwQdHf2Mo8hBq95YVpwYqiRDo HASY6z0ypnNq1VxNkHmQfcDFl2tIAWsOU73dGQigGpjfpqMpF2UMJvPyyy9HyhWC0IMPPtjrbnfh 56qrroqUsQMOOCCMGjUqEpTuuOOOaEeTcePGBT5pE+vz1lsvTtU2NAqbbJJ2DkpPCBQPgfvuuy/w WbBgQRQS08lCEXVjVzKszbvssku0RsPDoF3oueuuuyJ+hEGIeyhuTz75ZJg5c2bYfPPNw6abbpp6 IxpLFAmBrkMAYyyHGOORZkyKhIAQEAJCwJTNrEFA4GF92B//+McwZ86cKDu8Yiho3GO9GNafD3zg A+aG/Hi49dZbI0UMoYgFrOxuwndWZI65lWXKKgelKwSKhYCPqx133LF345xilTCd0sBf2K6WrWrv vffeyPvlAiD3ULo432fLLbeMlLRrr7024keETiMs/s0C1V966aV0CrMyFeRPy9pwTzVZJSYE2gKB F154IRpXjzzySK8XqC0KrkIKASEgBDJEIHPPGEoXlukzzjgjsoShmCHs8EEQ6unpCbvuumu0ewmC 0k477dS7YHXMmDFh3333zbD6fUkjIImEQDcgsNlmmwU+8+fPD7fddluvl7rT6g7vwdgzceLE6Bwf jEAYfrgOH8IzyBa2hCRirR++cnUw91hXdvrpp6cOyXPPxYqYHRlkfC715JWgECg0AnvvvXfgw9j7 7ne/27G8p9CNoMIJASFQOAQyV8a8xlioISzSvj4M7xe7mx100EFR6CL3CSVCGIJ8XVn0R8r/mIxm +aScqJITAm2EQHJXwTYqdkNFhd+wSxm8Bn7C+jAWycNjCJ1GUeOcH5475phjouv8dn7VUGZ1PGx6 oEgIdD0CrM/EKCISAkJACAiBEHJTxhxsGDDbtvoCVQQlhKQ99tgjegTLNcJQ1kTE5PbbZ52L0hcC QqDVCDivwfM+duzYXmPP9sYAuPeRj3wkKiIHrGYtIObA2loNt/IXAkJACAgBISAEGkAgd2WMsvm6 DX67oJS0ROehjN15ZwinnEIJREJACHQDAvCV5O5k7nl//fXXe6vP7q4iISAEhIAQEAJCQAjkhUDm G3jkVZFG81GYYqOI6XkhIASEgBAQAkJACAgBISAE0kSga5WxNEFUWkJACAiBRhFgAw854hpFTc8L ASEgBISAEOgsBKSMdVZ7qjZCQAi0CQJ25rbtKtcmhVUxhYAQEAJCQAgIgUwQkDKWCaxKVAgIASFQ HYEjjwzhppuqP6O7QkAIdA8CldbLV7rePciopkKgsxGQMtbZ7avaCQEhUFAE2FlRu3sXtHFULCGQ MwKcx1pK7O5a7nrpc/pbCAiB9kZAylh7t59KLwSEQJsigCKmre7btPFUbCGQIgLs4jp16tRw9dVX r6J8DR06NMyYMSNceeWVq1xPMWslJQSEQAEQaMnW9gWot4ogBISAEBACQkAICIGWIUD4IYoYZxw+ //zz0bE/HpLIN8cATZkyJYwePToMGIDtfHl0FuKQIUNbVmZlLAQ6HYEhQ4ZkfuZoKYbyjJUior+F gBAQAkJACAgBIZAhAihbixcvDvPmzQvDhg0LR9oi0rXszB0/eH7NNdcMs2bNCuPGjQtbbrnlKtdn zrwtXH75Jb0H2GdYTCUtBLoCAc4gveyyy8LkyZPDzJkzA+MvT5IythJthQvl2e2UlxAQAkJACAiB 7kVg0KBBYfbs2eHaa6+NlKply5aFd955JwKEdWL8/Zvf/Ca88MIL4Z577glLliyxsOY1IqVs1KgN wtZbb7vSW9a9GKrmQiAtBPBQb7PNNuFd73pXWG+99XqNH2mlXysdhSnWQkj3hYAQEAJCQAgIASGQ IgJvvfVW2HfffcMBBxwQltuhg+4RQyhESdtwww3DqaeeGp5++umwaNGiKJyRZwhdRGDcb79RKZZG SQmB7kYA48j+++8fgYDxg3GWJ0kZM7RffDGEX/86hC9/OU/olZcQEAJCQAgIASHQrQighPGBUL4m TpwYCJcaPnx4YN3KLrvsEnbYYQdTvPbrVdbwjr311rJuhUz1FgKZI4ChhHGWJ0kZM7Q5ePWNN/KE XXkJASEgBISAEBACQiBGgDUqo0aNMkXrrbDppptGShpryhAK11lnndwt9WoXISAE8kNAa8YMa1sf azGi+YGunISAEBACQkAICAEh4Ah4CCLKFyFSHrbo1/25PL4feSRYaGQeOSkPISAEQEDKmIFw7LEh bLCBOoQQEAJCQAgIASEgBLobgWuuCeHVV7sbA9VeCOSJgJQxQ9s2KbJdjPKEXXkJASHQ7QiI53R7 D1D9hUDxELCd9u3w6WDb7RevbCqREOhUBFqijLFta3yAYQwrv0eMGBF9ktc7FXTVSwgIgdYgwI5J yYW5/B46dGj0SV7Po3QbbWRHuNra/fnz88hNeQgBISAEaiOAcXrs2BD+/Ofaz+oJISAE0kEgd2UM Reyhhx6KtmpF+OHDeRpXmymGD7/zFoqA0oohEgJCoIMR4EDV1157LVog79XE+HPXXXdFhzzmbQiy DdNsXYg2D/K20LcQEALFQGDjjYMdRl2MsqgUQqAbEMhVGeP8DBSxc889N7z++uuR0oWAdN1114WR I0dGH36jsEGtUMq6odFVRyEAAnkrH61EHd7z5JNPhm984xsR76Hu8J6bbropOsenp6fHLMF/Duxo ljdZUURCQAgIgUIgcPPNIUyYEBuKClEgFUIIdAECuYgBKFVrr712JOhsYDtl7LPPPr0nzXPiPIrY yy+/HH34zTXeYVtXLNmcPJ8lmUwWLrggWF5Z5qK0hUAxEGA8Ma74+I5dxShZ+qWAjxCGSHgidd16 6617z/UhNw5THT16dNjYTMH8dgMQyptICAiBbBBohdEjm5p0Xqps3GFiWOS177zaqUZCoJgIZH7O GMINoYdXXHFF2HbbbSNFLMmIsVBzH2UNQlDkHYQnTsE+77zzwsEHHxwOOuigzBBkoSrrNzLW+TIr vxIWAo0gwLi69dZbIw8RB4y6AtJIGu3wLPXizJ577703bLLJJrYOYmy47bbbVlFAOb/nqaeeiq6h lKGw4TGbNm2anT34Rjj00EPD+PHj26G6KqMQKDwCM2bMCHfccYed7bmgZUsSCg9SiwuIHQpxjBBq s4ebMavFBVL2QqALEMhcGUO4QSjayLQdNulAOEIAxPvFPf5+6aWXwhFHHBHBTdiQC1EIQmeddVZm zeC7mcF4Tjgh2OSQWVZKWAgUBgEMG3zwRn//+9+PxmFhCpdyQeAxL774YmTs4eweDD/Ok/B+zZkz J0yaNCniQ5dffnk46qijot/77rtv+NSnPhWGDBmScomUnBDoXgT222+/sPvuu4fnnnsu/PrXv+5o 3tOurcymQltsEW8u9Mor8e92rYvKLQTaBYHMlTGAwBOG8OfC0HbbbReG2+r1N998M1qvMXHixHD9 9ddHmB199NGRMMQfy+EKGZAfZmi6YS/hFTOdUSQEugYBDCGdTChdeLlOPPHEyACEIkaYNNdYs/rs s8+Gww8/PFx88cURDBh/wIT3CG0kZFokBIRAeghg3ODD3N+pHvn00GpdSi56aT1r69pAOXcXArko Ywg3rP+C+D3BVoeimOEd22mnnQIW6tNPP70Xee5lSeYQiGj99ftygenICN6Hh34JgU5AAH6D4uX0 3ve+N+JB8B7Wj2EUIoQRwXDdddftNQDxnkgICIFsEGD8iVZFADmITzJ0nM3MMB5hSOI6JNa0Km76 Swh0AgK5bOCRBAqhB8bizBihB+ULi7R/sraYlbP2mKEuPPhgsqT6LQSEQKci4LspwosIn0Yp43fW ZEthjd9lnYvSFwJCoJ0QQAnDW/joo49GChllZ9387Nmzw5VXXhlmzZoV7X6Lx8psSNH5hIQQioSA EOgMBHJXxooKG96ya64paulULiEgBNJAIOnx8t8Yhtw4lEYe1dJAgEp65Ks9q3tCQAh0PgIYnzFE X3LJJWHq1KmRJwxjEWvp2XCI6CHW97Lbqy2mCGw4xreHEnY+QqqhEMjXI5y1Q6hce0oZW4mKwhTL dQ9dEwJCIE0EOMNn5V5FaSartISAEGgzBDAGEYaIZ57fbBpEqDS/EQY9LHHu3LlRSLU/t3z5iuje m28uip5ts2qruEKgIQSs+5u3ONjxMw291vDDjDt2UGZZQzJUuOGE+vmClLGVwLGBh8LY+9mL9JoQ EAJ1IWAy1iprPthDpQXnTNdVVj0kBIRAdggQhvigrY24+uqro9DETTfdtNdDjzLGfXZ7RWFjl+l5 8+ZFzyEw3nffneHSSy+z0Op4HVlapXTB1078kDyUFqhKpykEfHO9rOdJjtX6xS9+EX784x+Hu+++ O9p4sKmCN/iylLGVgO2yS7B1Iw2ip8eFgBAQAg0gUKqMcXyiRSKJhIAQ6EIEhlnM4XrrrRfVnDWr fDxskdDFnXfeOUyYMCFaL4awiPWeM1nHj59gR2+cbopaukdvuODL2lbLSiQEWo4AUWt5EDsof+EL Xwhf+cpXorON81hDnqxXTtVMZlnM38cfH8KGGxazbCqVEBACnYkAi/GffLIz66ZaCQEhUBkBNi5j R9dDDjkk8nghDG6zzTbRCw8//HAUsoi37Nxzzw1bbbWVhWlt3Os5Y41rFmvG8hJ8K6OiO0Kg9Qjk tYY8WVOzf4hAgF1jFaaoviAEhECeCLCBo+1cLRICQqDLEEh6wKj6+razz2GHHRYdAzR27NgIDc5d RWkjZBFPWZ4k3pQn2sqr2xGQZ6zbe4DqLwSEgBAQAkJACLQUAazxHqZIOCIf/vbr/J0njRkTQk9P njkqLyHQvQhIGevetlfNhYAQEAJCQAgIASGwGgIHHxzCrbeudlkXhIAQyAABKWMZgKokhYAQEAJC QAgIASHQrghop9d2bTmVux0RkDLWjq2mMgsBISAEhIAQEAJCQAgIASHQ9ghIGWv7JlQFhIAQEAJC QAgIASEgBISAEGhHBKSMtWOrqcxCQAgIASEgBISAEBACQkAItD0CUsbavglVASEgBISAEBACQkAI CAEhIATaEQEpY+3YaiqzEBACQkAICAEhIASEgBAQAm2PgJSxtm9CVUAICAEhIASEgBAQAkJACAiB dkSgMMoYp9HzEQkBISAEhIAQEAJCQAgIASEgBLoBgUIoY2uuuWZ00jynzfNbJASEgBDIAwH4zYAB A6JPK3jPO+/kUUvlIQSEgBCojQDil4lhIiEgBHJGYFDO+a2W3cCBA8PDDz8cpk+fHnnGDj/88LDD Djus9pwuCAEhIATSRADeM2fOnPCXv/wlUsaOPvrosOWWW6aZRc20Ro8OYfnyEObNC2H99Ws+rgeE gBDoIgSS0UIrVqzIvOZPPx2MB8bZyFCUOdzKQAj0ItBSz5gzmuHDh4dJkyaFD3zgA2HatGmRdwzG M2TIkN6C6ocQEALpIrDOOut0fWgwCtmHP/zhcMQRR4SpU6eGtdZaK8B7Bg8enC7YFVIbOjRYfiEs WlThAV0WAh2IwIgRI7qe95Q2Kzxn0KA++7h77JcsWdLrvS99J+2/b7klhEMPjVM1sSziTZa9SAgI gYwR6Bv5GWdULvm3337brMLLwxZbbBEJPw899FDYfPPNwztmkiFk6L777gtXXXVV2HnnnaNPuTTS vKYla2miqbSKigDjjM/8+fPD0qVLu1Yogvdsu+22Ee/p6ekJG2ywQS/vefDBB8MNN9wQtt9+++iZ rNvSIiVFQqDjEcAT/fjjj4eXX345vPXWW13Le0obGiXsjjvuCC+++GJklAYbPvAg+PT65jbHc591 KDVhipZtRBttFHvtralMRistsf4WAkIgTQRaJgLAVGbNmhUuvfTSSACCSS9YsCAcd9xxkYCIdRor NV4zvvMgM5KLhEDHI+Djaqi5Zdw73fGVTlQQ3nPPPfeEyZMnR7znscceCy+99FIkBLFuFUIQevPN N6PvxKv6KQSEQBMI+LhavHhx5IFuIqmOeBX+i3ceXjN79uxISXWPGDzptddeC2eccUZ0fZ7FMvM8 9wcPHhLWXjsfCGQoygdn5VIcBIjKyyMsOFnjliljMOVx48ZFjAYr9E9+8pOAp+yRRx6JmBO/x44d G4455piw3XbbJcucyW+ikn7zm2AKYSbJK80V2dkAACAASURBVFEhUBgEGE+Mq2OPPbY3LK8whcuh IPCePffcM5xyyimRAPTTn/40wgHvGIIO9/faa6/woQ99KOy44445lEhZCIHuQIA5nXFFaLCHBHdH zcvXEjmHMEQMYxMnToy+EQL5rLfeepFMdNFFF0VKGGHlEIrb3/52b/jd76Yar9JuG+WR1VUh0BgC GGL/8Ic/RNF4999/f+Ze6NLStUwZ84LAdNY2E8/xxx8frRFDGIKwABFClReR7VNPpbeT0KuvhnDl lXmVXvkIgcYReOONN3K3/jReymzeICzI12i8+93vjnZz9ZBNeA8CUjvS738fbwbSjmVXmbsHgYUL F3Yt7/FWxkOP0HfZZZdFBiAUM5ZoQPCmV02IQEn74he/GK0lw0sGb+IzaNCakbzEb5EQEALpIMB4 48PYzNsz1tI1Y8AHA2Ldxk477RShiXbKtVYQ0ZBp8bZf/jJYiEEIJ5zQipooTyEgBKohAKOF17Ae FS+Z/90q3lOtrI3cs41pzaunnRkbwUzPCoFWIIAHfu+9944+hCqiiPHBIE3oNAIh4ZxXX311xKtY ssH9oUOHmby0q3nS1jOlrBUlV55CoPMQwFN/5JFHRhV74oknctdDWj6UsezAlPg4uXfM/077m5DE lQ643qRNNjNPXHrK2LPPhvDMM/FiWOOpIiEgBAqGALwHhYyPE0JROxORTGkZlNoZB5VdCLQLAvAh lCw2EGJXV2QhrvH3UUcdFW14wuYdI0eOjIxGK1a8YzxrabDAhmCbUmZKiGWSXzKFWIkXEAGPksmz aC1XxvKsrOdle4WstpU0CpptnGbasD/V3DeLa3/3uxBefz2EUaOaS0tvCwEhIARqIYBOSah1m+uT taqp+0KgoxDwcChCEzfddNPIOLTVVltFlnm+WeOLgobRKK/NzBxg29w6YFhmZ0WREBAC2SHQ8jVj 2VWtcsq//W3stUo+gUWZkMK0lqlhncaiJCt1EmX9FgJCICsEWKcKb9PxjFkhrHSFQHYIoJS5V4xv D51mw46k9z67EqyeMmeOzZix+nVdEQJCIF0EutIztu66IWy88epAYllOS3lSLPfq+OqKEBACqyOQ VigQvEtesdXx1RUhIAT6hwCRQpJl+oed3hICjSDQlZ4xXO4nntgITI09S2gi2+QT+igSAkJACFRD YJNNQpg7t9oT9d9Ly5hUf456UggIASEgBISAEGgGga5UxtisI7Fmvxn8yr6Lpds2Y5GVuiw6uigE hEASgcMOC2HatOQV/RYCQkAICAEhIAS6BYGuVMayblys03jFbIMkkRAQAkKgKgLLl8twUxUg3RQC QkAICAEh0MEISBnLqHHxvqW1M2NGRVSyQkAItAABeENWpDUeWSGrdIWAEBACQkAIZIOAlLEMcMUj xgYhH/5werszZlBMJSkEhECOCLz4YuwB23DDbDJFEWP3M4U8ZoOvUhUCQkAICAEhkAUCUsYSqBJe mMYBh1i+OVR6660VqpiAVz+FQFcjsGhRvFtrVhv7wHc22yyE557raphVeSEgBFJCQEstUgJSyQiB GghIGUsA9NJL8Tk9iUv9+gkD22abWCHLMiSpX4XTS0JACLQEAQw0WVNa2+RnXU6lLwSEQPERYKdX 1rS+8krxy6oSCoF2RqArzxmr1GALFoTAp1ni4Gi2zidsSJalZtHU+0KgsxEQj+js9lXthEC7IsAB 8hiUFy9u1xqo3EKgPRDIwVbbHkBQyu22C4EDodMgLNTyiqWBpNIQAp2NwLBhMa/AiNMMEWIN3xEJ ASHQ/gisMAFirbXWCiNGjIi+W1mjPLz6rayf8hYCrUZAyliiBU46KQQOhE6L0lqDllZ5lI4QEALF Q4DNfggFevnl5sr2/PPxmjF52prDUW8LgSIgMGjQoPCPf/wj/PGPfww9PT2Bv0VCQAh0JgJSxhLt mqY3C0sSa9CuuCKRgX4KASEgBCoggPGmGZo+PYQJE3SkRjMY6l0hUAQE1jBm8MYbb4SHHnooDB06 NEyZMiXMnz8/cN0p8dMv6VsICIE2RUCmlowaDmVs4cIQXnghowyUrBAQAkIggQCGc51tmABEP4VA GyKAwjXMYpfxhB133HFhQzsL45FHHglvvvlm9JsqEcK4fLntFBZkT2/DJlaRC4rAOyvDShhfeVOu I9ljoIcPHx7FQHuFYT5c45O0/OQNBvinsbU95V6yJATCHjffPO9aKD8hIATKITDY9pQvXX9RFN5T rry6JgSEQHchAD9atmxZuPHGG8Njjz0WhtgOGrfeeqstn9go+oDG66+/Hu6885ZwwQUXhqVLTdAQ CQEh0DQCi22Xmh/+8Ifh29/+drj99ttzX6eZq2cMS8+jjz4annrqKdssY7uw5ZZbmnVnecR8qDyM 6IADDmiZQsb5P5deGsLHPhbCOus017asAXnXu4I1anPp6G0hIASaR2DgwIFRyM8zzzxj4/JdYaut top4zxKzmsyYMSNw/8ADD2w+I6UgBISAEGgSASz08KRZs2aF2bNnRx6yARZuw3UMSvvtd1A47bSN w+DBuYpwTdZKrwuB4iJAOPDnPve5qIAoZRhF8qTcPGMoWrjZYSzsEHTTTTeFV1991TxRa0ZCEvHR 8+bNC1OnTjUGY1pRC2jUqBD23DMOL2w2e6uuWa20o2KzOOr97BBgTHYDUU/4y5w5cyLvO7yH9Rfw HsJ/3rLFoq+99lrEe+BNULdg0w3trzoWDwGNr/Jt4tFD73vf+8IWW2wRLr/8clt7/lL0jeEI3PgM HDjI+JcUsfIo6qoQ6B8CyAR8MITkTbmMZpiHx0C///3vj9zt55xzTiQgjRw5Muy2226B77lz50ZM BwsQBGNKhjJmDY61Qdhll/TOBqMa7JD2pz+FMHFi1qVX+kKgPgR8THl8dH1vtedT8B7Cn/HKH3vs sWH99dcPDz/8cGQYWtfOsdh9990j3vP000+Hq6++OjjvedsWX2EZgym3gjG3J9oqtRCojgCRMB4N U/3J7r0LfyYUke9/+7d/s3Wgb0e/4WHOu/m2/3Mh1qFa1iIh0DUI+DjLs8KZDzGEISzPWKM3twVU Y8eOjeIxEYpGjx7dy2RgPtOmTQuHHXZY9Dza6W233WZrr5aEQw45JBx88MG54II3y4qcCpHOokUh PP54KskpESGQCgKMq1tuuSWa8N3amkrCBUsE3oNCBV8ZM2ZM2HXXXaOQxE022SRsbPvJw3BRtPCK Ear4nve8J+I9eMec90yYMEHhiwVrVxWnfRFg/RNLEhYsWBApGYxRUXkEHBuUMCgvAbH0aIxDDw3G H0M48cTy5dRVISAEmkcgc2WMIsJEUMhgLn//+9/Dgw8+uEoMNALTDTfcELbffvuw0047RQIUz48f Pz6cddZZbW2ZxjvWoqjL5nuHUuhIBBhX++23X+SJPu+883Kb5FsBJjwHYQbjzsyZM6OwRHYo8/UX S836cu2110be+a233rrXao8B6POf/3wriqw8hUDHInCoSfZ8WLvZ6bwnjUbMSwGjrBzFQ3SWbd64 CrEJmdnvREJACGSIQObKGMwESzPhiawZ++Y3vxk22GCDKBzxyCOPjNaNsX7j3nvvjaxlPLP//vtH VUaI8jUcGWKQadKEEqxchpJpPu2aOOew7bBDsHCxdq1B+5XbQ+/afWzVQh7egxJ2zDHHRF7ASy65 JApTvPLKK8MRRxwRrRt75ZVXorVkKGWLzI2NkgqhxLllulY+adw325OVNY2UtE41HRSVShYI+Jjy cOAs8lCa/UPARK8oKsg2cFyF0uJNKHt33hksXHyV5PWHEBAChkDmyhgoIxR5DPRXvvKVVWKgWSsG g95nn31612jgFfP3oh9t/A+Wpp6eYJ7B9IStNoZjtaJb1Eq4++74PLZx41a3yq32gi6khkCeVtfU Ct1gQs57eO2rX/1q5PlirRw8Z5Tt2MOurgcddFDEe7jG+oxWENbnZ58Ntp62+dyJajLHQ2ThLhWs mk9dKQiB5hHoBt7TPEr5prByqX5mmdoeSpEslFkGSlgItDEC8U4ZOVUAYYcP1mqs8vzGQubX2UXR 46NzKlKm2eAVY4v83/422LqUTLNq28QRFm1/hUgQZX2dSAhkhQAbB0BJqzxCIQpY8lpW+VdLl3UZ 06dXe6L+e3jif//7ePOg+t/Sk0JACAiB7BCwncPDH/4QbOO27PJQykKgXRHIVRkDJIQf/yRB82t8 dwq5Vwxje9ZWp3bFDFxefDFm0rLit2srtke5K/EYv97KWsAj0gpTpB6sUxXPaWWLKm8hIASSCMCP /vGPYFEIyav6LQSEAAjkEqbYrVAjEF12WbwoVoJR+V5gzlHzTITw2GPBDrMMtqlEsHU9WmdXHi1d bWcEULZWRmBnVg12QmNMrdyALbN8lLAQEAJCoFEEMFBrDX2jqOn5bkAgd89YN4CarCPMB+GoFcQZ Z4QFFJnWXjuEG28MduB37CH73e+CbepS5BKrbEKgfwiwjsvOcc2MiMK0JXBRyK8d4xgICxLFCGDk ue46oSEEhECrECDoiTWxRMKIhIAQWBWBrlTG8FjlFQ3ZKkWMZmYNFmEBRSVixy+/PBYe2WmJtXXs 6IRCVjRCsbXTF0RCoN8IcFYPa8OyInga3mXG/SOPyDuWxBmPJEYfvPAiISAE6keg9Nyx+t9c9UnG 3uGHh3Dzzate119CQAjYsoJuA2Hhwjh0sFNd5UmrE6GRKJ5FJTvPOxIcvS0IrSqqAslE8r3vhXDp pfLcFbU/Fb1ceYUp+rjPy+BUdNwpH+tRr7pq1TBRjD8YWURCQAhURgAPO7wkjbVeKHZaslEZa93p XgS6ThlbvDgW+CuF8GBBbXa9BcpFqxjOj34Uwk9/2h4dGuZ+2ml929njRXRBsmg1QJBm6/GHH477 T9HKp/IIARCQAla+HyAE7rhjCF/7WrBjVuJnCBvFIFQkeuKJ4pWpSPioLPkjMHp0sCNB4kOhm80d /tTKaKFmy6/3hUBWCHSdMoYCcOqpIay7bnlIN964eabz9NPxhNoKpoNwQYhSuxBMvpUCpJ31a4eN x6ET1azkKIk8d/31sZW9XfBVObsDAYxM8BuMBoynVo6pIiIOnznyyDiMc+rUEMDrmmtCGDasWKW9 4ooQ7BxykRAoHAKtkGcKB4IKJAQyQqDrlDFwZGKuRO9+dwh//nOlu/VdZwdFwgVb4R1jwxD3+sE8 ixymCJpJoZFQojzX85E/gs93vhPClCkhoJhVIrBkPZvW4lRCSNdbicALL8S7tqJcwN/4SHjqaxEU sOOPD+Hss0N49NEQnnsu9nTDL7Mm2gYlqx6CBzYbmVFPPnqmWAhw9ipnHQ60DslvjtvwM1n59nNZ i1XqxkuT1vqzxnPWG0Kg2Ah0pTKWVABKmwchplklqpU7KCKAUT8UQsJxsP6yTq6oBHN2JYj1WA88 kO55S7XqjfBKaOf/+3/x4dPVnqdf5K0sViuP7gkBRyDJszbZJISTTkpnjYen3+7feL05MgPaZpsQ CAeET1ebC+Knm/8XL1w1r3syB3Z9ZFMjUfcggAL2qFkIzj///HDhhReGpy20ZpBp5BxS/3s7vf1X v/qVbR51Q6SgtTMq8Ch4E3M+uyeLhIAQ6EOg65SxeoTpZi3Kzb7f1zyN/4Lh4e35z/+M38WT48pO 46ml/wZl++Mf43RRfDfcMIQPfjD++8474x0V8zz8mf5AaBfWaN9IpFKtCXGVZa8SOrpeC4GkwlTr 2Wbu05//+Z9DwBskihFgfPtOioccEsJFF8XHAOQxnsmbcxTrOWMOxY21bKLuQ+Aks6C820JzptrA xRO2zCacnXbaydZVnxYpaC9auA3es9hTNjgMH95eGLFj8rveFXvt2ahLJASKigDjD+90ntRVyhjn V7FtOgJ42oSSUe4cG/f85K2gEapIntQ177yrYYsChtJFKCjKDxPKzjtXeyPbe/QHJgbGHaFLlYh2 5IwoFMWcx2ilIul6GyFw9dWxkaSSQpamUkA47Trr1O+NaSMYUykqY5gw8v33r09BajZT+NyVV/Zt HFItPXg1ypuoOxBAsXrHBv+7TEsZbTtlvGHnvaxvLly8YkNtEt/ZJkeeQQkbYh2X34tNY58zZ7Yp bX81A8NbbQMUc/6ECfGYq8QH26YyKmjHIfCWWcumTZsWGUMeMS8G3uk8qauUMYTuhx7KZrLz9UTJ xkPxYKOQD30of+8UkzpCQFpMD2WTzSuaJc76IYTyr3+Ny4cQCnbQe98bf+f57+zZscWckE6s5ZXC ifAunnxysAlT3rE826dT8rrnnjgUtpIhiPPBUPLT2N0P4wZjnzA80eoIwJP//d9jnowXMQ+qxyiG Vwy+vfbaeZRIebQaAdaG3X333WHy5MmRQvaExc4+//zz4bjjjov+RgGDbrrppnDEEUeEDTbYILqO 8rZkyWJbfrAwd+t9M5jRt2XIbAZBvZslAoyr+fPnh1fNa7PEJmIMH3lSVylj8LasPBsu+BALTT4o GUz0p5wSh8OgmOVBLuxRBnZ1ZL2Yl62Z/FGYUFyaJQ6hZr2G4+HM+YtfDOHgg5tNvfL75PPaa6vf RzAjVBLi/h/+EP8u9y9hTgjLOY/RckXRtTZDgPVKn/pUZUMQfZAxUckY0Eh1MWqQHjyom+nJJysL f4cdFsJee8W8KA+M4D8rZeuK2eGt22672OCTRj+omJFuFAIBLPF77LGHGflOtiNTHrYjaX5qkSLD I4Vsri0eRCD8kS1o7unpsbnptehvQqdGmOVm9933CSeccJTJGGZ1yYGY+5p1FEgZy6GhlEW/ERhs wvM//dM/2Xrrk8K4ceMsrDxfr7OJ7O1PRZi4mGiZTPH8ECKEIIQSxGJxFBlXkrJEm3zYBIPQPzam wJNFvsRq/+lPcc6se6KcjRJKrO/SWPouXiOUPsJAXbnyZ1gfltxAxHFwwQSczOAXvvnNvjUd/m6a 3/fdF8J//MfqeXCUAbusQSyeB59y5OVkfVuR1uCVK6uuFQ8BeAEGB3hDNfJxUe2Zeu51qiJGdMPj j9eDQAgXXBAs7KTyswcdFMKtt1a+n+YdBFH4LmHRlYhnfDdM8ZhKKHXWdbxjhCNCB1mHJExxkXVy 1ouhjG277bZhzJgx4QXbktN3WMSCv3Tpkt7z8vJABONOEeSsPOqqPISAPGMlfQAFAAWjVnjcf/93 COedV/JyE38yKfaHELjwjLEbFmFCEIoGyghrRrImQu123z2Eu+6KvVh8c6gyGLKRB8Q2yyhsjRKL yksFBM7dQtghvIYQPtrh/vvjlAlrZAMBvGmeN3dcGSvNHyErSwES/ClfUjGkDCiPnu+111aecHjO 17f5RgCldaj37+QmJvW+o+faFwH6NuT9LP5r9X9RxOB5osoI+Fl/GH5++9vKz4E5fPwvf4kNLOV4 OoZPoheyJvjFMceE8C//EvNmP3S6XL7eR8qVt9zzutbeCKBgoXjtuuuukVX+eLMMbr/99mGMKWDr WtgGfx977LHRx7e8b0WN0zjyx8udhpfN09K3EOgUBGz6LyYhmLChApMv67yqEcpArWd4v9RrUy5N JkGUjkatQKSNIIVnBYEfCyf0gQ/EawD+9rf470b/xZpK+BIhdJW8Np4mz+27bwgW1RB5qSzyISqT 7Y7ba0Wjfo1Y38kT5QEFE0WTEENXLJ96KoSvfS1Om93CyPc3v4lLgwLIeT4IHijT06eHwPOUpRzV 0zbl3qv3GnUmzIL6J4m/6T/cJ5TMhaHkM/6be2mEKYLN3//uqVb+Bnu8mqJ0EPCF8OViwctdSyfX 2COCoWbUqOopmlE8lVDg6rmkfxeekPX49VLD5+FzfKptuAPfNKdC2GqreIMexne1se3pZ/ENNiNH xmVmPR+h2tWI50v5VLXnda+9EYD3LDWh43WbLPmgnBEihQfMr+Exy3t3tySqafVJ0sFA3ah8lSxL p/6GZ+UcGdepULZlvWyKyo9gOmwZycLU0kMMuTfMNBgXivAsXXJJLMi4YuMlRSmwNa29hKBTalFO CrIoEzffXDnMrjch+8GkzaC46qrk1dq/8fhwpte998brxAh/c2JiLS2f36v17QdIn3NObcGcTQBQ JN0rR5nABqUIQc+JayiMvsW8Xy/3jScN5YtIivXWC3bmSaxYYZmmfW6/PRZ2uE+6fCC+yd/xfPDB WEFMrjujnGBTSjDstInykJdj4+mDFwqzGSOjb/4uR+XKWe65eq6RFmvVahHYg7GoeQTgOQgzCDfw GF8cT8r8Jl48K/IxUSt92ruSsaLWu628/8tfxjwh6zKwnpPzAG2NdWRYqebVgu+gsMFLMOgx5vBs t4IoJ94ANg0xJ0eYMaN6KShzmvymem66KwRqI5BWn2QcpOllq13y9nni17+Wkto+rZV+SXNVxrD0 XGuxYJMnT7a1VTeuYulBILrMNI8FNnPGgtIK+14WTUpMrHgkWI+FYoWXCGWMgV1KKGEoGjzngizv 8jwTHDIXz9SiRpUnvC54h/AgsfaIMqdBpIuQhsepWpkQPGbOjC0rPpFTBixQKEzJ9V7cR+moxztD HXiXHb5QyvB0YeGfMiVWWhFwvK6e7xVXxF40roM3YZEIUChCXgfuPfvsqqGP1IG8aq2rqQfXpDJO KKWHJ5JnkuhDY8cGWxQd97Fy1nMwBC+vX/L90t/ki/BXjcCy3GHcKMf0WycwanbRtKfVzd8oX1ib rzHQr7ZO/AeT6rE8c92NPz/4wQ+sjyxcyXvSRauefuM5lhoL/HqtbwT+evharXQavY/nFp7g4cm8 z7oo9+jCu6qFE5bLD+twMrTZn2HssgYXjP7v/42NO36v9JtnwANFmI2M+K7lmSxNo9G/bSO8sso0 a9zYRn/8+Biram3swirGQ5EQ6EQE0lLsOg0bZCWiZpKOhk6ro+pTGQET9/IhF4i2s+2i/tlOJH3G FiHNNa0FxYtY6J6ennDxxRebgvX2SgEJD9oWUbgfAj87Y+FVcSGWbxd6GdxOeGxOPLFv0uNvFACe nzUrXuPEoZ+ViLTwxKFQlVP2qr3nikalZ/pzHSGCdGtZ18GCdQkoqgjxEEIgg5v1Xi7UUz8GPWny 7YRiVq6+5Av2pPHAA/Hiea6RNvnwjfLkf6NMnH12nD55kofXwfPim+t4/RDayBdFjHRMTw/Tp8ft x3P9JYRA927edlssICLkcd5PkigHyjr3NttsVUz8ORRs+pHj6tfLfeOBpP/hveVzww2rCo3kQ9kI t3IvnG9yQlipC9SeH+lxPksWxM5droxkkX5R0oTHYAg68MADw2c+85lo69qXrONRdzz0s42x3HLL LdEzlBkPGmf6OBHGiqGlP4SXnX6eHGuV0mHn1Y02qnS3/HXWRvn43HrrvmfKGRX67qb3C2zYARAD A/2dsYzRzPOnj1cLJyxXEvjM5z/fZ0DhGcYDY9ePAMDb72OlXBpgAh7wlVq8s9z7/bkGf+CsScZ4 kuA/KGL1EPyZMK6kUaae99rtmXWM2XcD72mndnEDRtZlpo8jL4j6EEBuI6rKNs8M8AtRHwLIkeVk 074nOuNXbsoYAhFhiLvsskskAMGIkwLPAzYDv7f3oKnlNlhH22R7gu12dYdZG98K554bT86uVPCN xwKvB4KOD26uo7QxITJx41GikyPoI1Rz4DBrCSoRabHzYLnNHiq9U+s6zCch29V6fJX71JE1V+Xe 5x5KIwI/dXWhg/wgF/b57cIRFnTWePABK4QVFIP3vS/2XvFsklBMv//9EH7yk1j4YZMLysIHzFFk TLeOPE8II3xQAM8/P1YMEU4Q2Ai/Sp6f4wwZgWrixPge5bF1zJHSTLmaITxsCGQIw9Qd6ziEIgQh 7HAdQZF6IOx95CPxttLxE33/0pd4jrrVIvJD6e/piT2JWMV5F08ihPKJ55CQT++zKMK0Fe3HfQRs mDLhXwigbMSSJj1pwPzZNLwpVij3EKWZfpHSQrFyj9dWtoCIM0QGGtBrr+yM1H/OnDnRAnkXDv38 n8uNYVx77ezIg1vtyINq9aV/19t3NtmkPqUtmR/9mU0q4HHsDugEP2AMJXmA30vzmz4ML2A847li I6VkSDheeTdM1JMvfZ93vvzlVY+Z4LqdixuNZ5puhx3i8Uva5QiBBjzA38dZuefSvAYvZtdWypok eG6pgpa8X/obwQNeWA8RddBOitvfbPE04+oSC1vBW+1jrp666pk+BOjX1TysfU/W/4udRZM8pP43 G3vS5ZPG3ursp4ncgf8z3yOXoJyJYgSQzVjP3+lUh3jZHAQwWxanXmD7DN9jJ59iieYQw8PsoJeN bWEVf99rksRDphGwSHWuzWhxmCKdcrl5v+ZZON070WSGMOwTqwv9JkdFExdCB0oAkxjrcRCemKiZ qJiwXHmoZf3hfdY3MaF6Xs0hEL+NlwYBvVGiHHhGEKxKlQEs7ljswQAh3ok6EpJjZ0f2nqHFNRRX MPrhD2MFC4ENRYmy4X0EI/JKTu6850qep48SiKeR5xEcUDTAn2fBjLKiwN1xR6yYIIhwyDOKGWmR Lx/qw/tjxsRCKF4BGBFpINg0Q4RFUgYUGhQfp5//PIT/9b/i8lNmQlkpy957x32n3ERR6t2g3DAI 8IRgpGeeGQtcKP8wUpRY6gquWPFReCHKggCNEuv9CxzBjvcwGHz3u/G23IQ9ocyhSBJPTp3SoDet E+AZesUaGo9RpxK8B4HvSpvh4C/U9S+muXzAFgmOsgHCltJ3WCdFQHzcgObQVXgPCtzaaw+P+NNN Nw2P2hrlvj/Ee7RvPYQhiLHDmKyX6DdsCIFwlrQeshU1Z2nRn7IkFC/WgNDXMdjYGbbRuih2UoUY J9SnXmWEsQYPPvTQmAckeRFjh7MI8RyBK2OVepcjFCC/5+Os3HNpXjPnajj99Hi8p5lutbQITZ88 udoTle8xf7CpUmnoduU3mr/DGVnM1P8CzwAAIABJREFU+xxgzPhkrIkaQ4BxjtKU9rEMGC8JA86S aG54Ft/18oQsy1OUtF0Wgn/A35Jr/ItSxlaUA/5P5JCded7xZGJltgSzReHiIDW8Yv9tLicEHwRC DjJ8zszGMOh99tnHhNQXojM2nEkPGTI4nHrq+02wHRx5wZjwEViYaJlgmZARdvlm0p80KRaMGewo VAg23PfJ2L+r1RgmgfBEXv0lhA8EfSererQGgnNv6iUECZRJFAViiBHgYcIunFBfhBYGMYIXSgXv kC8WFjalwJJM/SEwg9lyn/fAAiwRfghBRCZHgUCISlp2seqDY5JQ6FAukkImjJUykibpQwiCSQsP SiPlsEixqC7gRPmdPvzhOFSQPFGga1FSAS19Fu8TbUm9SM8JDFHS8EbRb8CBnc5YD4cSX1pX3qM/ JfsOv6nj5z4XW7L4m7pSF28TFCmugylpoxTisf2f/zP2GlJ2rzvfKLh4HQk3/cUvgh38Gf+m/VAg zzgjrovXo5lvxuFHzA14isXFsXFFpwpE1Iv6nWHg7W5nPnzjG9+wMfBkpHzNs8H1D9NitrZYtg99 6EPWboOiZ8GVUOkdd9wxMhgdcMCYaMMFHycox40QXlLGS7L/VHqfcUz/8zFe6bnkdcYT/Yt3vD/5 fSZ1+EQjxBhuRIGDRzFuLAI0Gv9bbBHC+98feo0pjAfqXlq2SmXiOcYtdNRRfZsMcZ2xyweMGNc8 xxguJccbbA4/PN4ww9MsfTbNvykju9n2N8yIujRazjFjYmWKdqiH4P9EWsAT6ZvwSYw/rrjWk0Yz z2xj0j6G2CNMusIDLWocAfo+IbjM52kS81zW/YCxO3p0PIbhqaIYAdoU789ZZ8U8IClbdTNG8Kdy c1snYmLTR/aEcoXCxfdmtjCHcCGUsOU2MvGGjbUdFDj5+l/sIJb45GvTKgJryQZEu/exLTyCKgvF +aZxmLT4jVKAFwyhFwEbpQBFCi8L3gR2/8OiWq8wUC8aTH5+kLK/w4BiQkVwZv2Wk8m+kRJSj0Dm 7yAUEdpHeCVE+fGMsDietUUoK+RFXZlYmWRhpihh/IbpgRe/IRQfBH0+lBMhiTqQDkoiYYtnnx17 ycDSCeupb37h17weKBAIkBDlpWyk6XlynRBEdzGDF/XA+oNygqDoafEsRNkQuCq1VxJ3hND/+q++ 7fTjFOJ/KQ8Ewy+n2LErG22E4FYprziFWLBEyfSygh3Y0t8IDyNsCsGXskHgR99EicLCRTthHCBP PIq0DXV0Il2e4xnS5gNRbq8HadQqZ/xW/f8SvtepilgSBZQrwhGPMul+X5OWCZcmVBEj0ZZbbhkZ gj772c+GnW3fcZ4dMmSNcNFFy6LxhsBKW8NX8FDSrk54byspLhg0enri9mac0Ob1UqPtjMLOO4yd JNHHvC8lr1f7TbkxBFQj8nGllPQZ7whY//t/h3DkkTHv5TqGGPj0qaf2heliNAKPSsRYcIUkqUzi hf74x+NwaucvPEvYOQIk4+dLX4pxhk+CB7wT3mMBGVVD0yuVpdZ1eIfj4M9SFsY/Y7mR40yoM3NZ PUZAeDK8Bt5AHRHM8bQ7sVtjJcMfcyfzIh58yoliBnb08TwJY2w38J6sMKWftaPA7mMbXHw+zQqj dkoXfkl7Irdi0IHfNWpIa6a+LHWBrxPy7nJMaXrIgTZNRvJ26b2s/qaPJOeErPIpQro2ZeVDhAhh CcMKTZjQcRZDx6GGbOix2DSF+TaDbr755tEzK1ZQrJdtQr0umnCwbkJMGnhXEICYVFBKELYRiunM Hp5I6AUdiut8fJc6BOq0iLIQHkSYjk/+MBoUogMOiCdIz8snykaYDxMlgxHhHaLs/CYt6k+9ETi4 7kI7eaP4UR6MjnjIUJbAhYGEMoBAg2JG+rzn3iWY+ze/GefJBI+giZWmdJJ+z3uChZnE1lhwxZuV JAQFVyC4vttusXeP34RU+kBH4MPjV9omeAIJr6Q85QjcEXScCH1EIKPOCJ8uIKGEQ+BQTrjlWTYa SIYLxm+s+i9rty66KMYPIRBhCSw/+MH4OYQ9lEyU3P/zf+JnqSPXWOsFxq5Qo1AhOJMGm4W48Ey/ oN4wY/AoJ5CVq8OqJdVflRBA6IP37G9b2o23nRQOsAGKcWjTTTc1RWKp8ZU3zDs60pi+NYQR+KN4 Mf58fR9jizZFwfDxzHdywqTvo7RhRKGP0r9N14uUdb6zIPoFYxXew5hulhDO6cuErlVSNKkXOyQ6 30NpwrtMCCHhhRi/6OsoBIxzvGWMCcY0a6psn6ZeXlOtvDwP7hDh05wZRtpshmFNF40rFB7wZjdH xhYh17yX5LWESGexFgalkrxdwGQ8jxkTz0XwH9bNwo/KjeeoUol/UKBQWlm7W4n38Tj8+Otfj/GF H5E3fMPrC29H4aX/liNCyr/1rVhp/ehHQ+Q5JES7VKks966uFQcB+hRzN8JzHuRzVX/z8jHp4zk5 tvubZie9xzpZ5EaI9bDsFusyTHw123/hr+yTwBFKlQyHzAsY6yrxlixK6Hwti7SLlqZN5fkRQlHy EEMUNCzWEIIQ6zviNSxr2JU37feDkceBrcchBA8mHiYgBCEmfLcocA0GhcBPkghGEIIC1xCaUBJq CbWedq1OQDoI0CiETLj8zURIufhulvD2oVQS2gZRTyyn1MUt3mBBGag35YVhkj+eOUIUUWrYoQ2F BWGJiRwPGISS4tjFV+J/SQOFl3cRJlyQAEd2oSSmHKEHQYBnLJorWpuSTIPfKCmsJXFPHNcow/HH x2VFQezp6Uuf+xDMmk08qGM5QuB0BY72JCTIPRbUh81E2EQApQ2PFe2+sov1euiS6VZrZ9Z6sb6M PkF7kB94UHdvF9r6O9+JlePJk2Oh8+ij43YiH4RED8fgfTBAkPzYx/o8iKTJDnL0ITwvTLKUC5zx LNKW4EGbifqHALwHo88im034hs/gBXPit1vqmYyYEBkrGDcYc7QH7UR/pm9BtEdyB0zGDeuGXEDi Pm3N2LEo7EyIvsn6UBR++laSGMuNEnWkTzOmkh4s6kY4MwYhjBjgAE7gUtovKROKGmlh/HEDBNvV Y4SAn5NeOcK4hcEHYvySNnyIzXW8fihk5P3pT8feONqIfNj0A+MPYeGMGyfScB7g19L4Zv7BywTB m5kHKBt5kSeKFVg5v+K5Sm0Cf4Ef8j7WcernhjLecyIf6kjfhBciHMFnwQ3CWICxbMyY8vMQRkz6 CtEJ8BV2rfzkJ2OFOUpA/7QFAow75nP4Tx7kcld/xxFGGfgBfRvCONLfcN44hfr+Remjz0PJ3/GV 4vzLePb1evDL//zP1flqVqVFRoLfEPYKj3aFuTQ/+Bg8Jw2jX2na+tvkv+KCMMAm+iG9wi/lpJMg sGJp9XA8OgjCAwIAEx0TDJOxE5M0zzOxYenl/WqEcoPCgMBdjVwAIX8YI4TAwETZKMPCRYx1GyGP OjCpw2SZaJnwIfJgkkXJREhiAGGVxWvDb+rFu3jC8NBQZ5gfmCH8oKh4mUkPBQEGmQy74jpC1s9+ 1qe0ISRAvI+H0gUNBi9KE2Wy6K6IsLSiZEDgstNOMQOkfRAYGcQITginKIkQymMplXrj/D54UF7S hhx3cCAkkLUPLGrmOZ7BSo4iihI0blwIp50Wv1fvv1iYE/J6lB84gx14QFj5sWo5IejQB5wQjvCO QXwjaCKQgqO3LRawE06IJ1cUQPCiHxPKaY7kMGlS3CfoI6LsEaBvswZq+vQQJkyIQ0ZQsBF4UdJ8 rQZji9BcV84YOygOeDkIjaO93IrYKE+ot5YIGPArJvBSQpmBL9Kf6iXnGXh1ERA+9al4jOIFJySX Pkk9CUvEmuqKUzJ9xgj1xuDCYeo+VjBg8DdYWlR6LzbJd/GgeVizG9KIbmABN+lCjEk+KC4Q/IcD leGb8ByMUfAliLozttw7HV9N51/qzwbAePtQDMkfHofyDu5soEIfwMvoZS/XJs7n4ZG0J/2K90v7 DHVBgIXPofTDv/EWoqS6wNnTE3sn4auk60SZeB+hmvZwjGkj5gWiKETthQB9yufCtEpeyVhA/6hk IKgnb/pYci5F8YC/ZE2MC/fww7cIzy0KMW8QZQAx5hn7EHIByiptUcoD4ifS/ZdIH/gIcxveuUp5 wnvg95Sz0jPplqy7Uls5vRWv0gjaNLoLoEweWBlRUrA8E1oBM+IaW9XDlFCgmKB84qNWpOFCO5MQ TKUSw+F5BgXCdJJxcL2UKJenTd4MeAQBNmgoVTDKTaykh+DBhI4AjvCCMtfTEwvf1AUBizwgFDCs 0tSFCZWJFhzwyvA7WWeeJy0XSKgvShVryxC2UNhQ6mCG5F1KpI9QweTtFmzKcvLJcdgVa7W4R9nA id8IO4QPcbgpRHtxHeFjwoTYEvs//kfcnuDBB8K7Vkq0Ee1QSpQZgdgFT8rpRCgSa0Zg+tSRb5RF 2hxhBaUGBZXfe+0Vwk9/GqdTrS94vyEP3uNZGCXbz6JkISwS3pNMAyEVoQyqJACCC2WkrVFeCbN0 ok6svcFijeJKGUiTPFAORfkgQN+mD2IYQIkfMyZW0Ggvxh3jk75Fe3k/oU/DCxiL9A8mLHiB9/Us Sk7alBPeU0r0TwQoF9T9PtZP+mApwdPol4RUwm/ggwgwEEYqJmO8KPRrxhLpukIUPxX/C98hX8K4 ndiMw/ZPiXgB1+AV//qvsYGCv+nbCAXUJcl7GXelRhS8jfCiJPEMigVEGSkvBK9gbSj1Sotc+QYv FD94/3779Sk4hDCDEXVBeIFfOK8q1ybuzfriF/vahfLCrwmTdcKYg8cP/k2/ZD5gjZ4rgZSH+RBs IfgKZaOt8eB9+9sxtih9omIhwAZChFKzjpXfTnjruZb1RkuMZfoc/TMLQtZJ9jvnr1nklUyTsFwM 8RhxL7wwNlw7T0s+14rfGLamTy+fM3y1GeW3fKrlryIr8WHjpT33rKxoISvihaftynnty6euq/Ui YGJDMQmBBg+Eh4Fg3YRhMKgJ/aKjMtmhUGDtQIBnMmJS5zoET0OQ9ckdIQFPWS2vVyXPTJxq/C/5 UD7KCROjbFjTSxUxLwfKSalQxqRO2AmCA2VmnQnvcw1iYiVN3kXhwsMzYUJ8rhhKAYIfeSMYUddK gh/32HIaSy0KCh6scsSAhBmTDwTzRBgiD8L1CDGgvqzTQNB0XKkHwhGDGexIg50GyY81ZQhdXEOg RZhA0UOAOPbYPuUtynDlPwi8rkgmr2MhRynx8Cn32iWfoawIPjxHuegXeEoR1MAMryHCNEozRDlK 2yW+09ePEO4mTYrxJW8YPETdStcCofShdGIsIO6b0E63PvMObQROlAXvgHvNuAc2MEOs/FjaESQJ 9wIP2jCp9PG8KFsEGJMIsvAQ+ixCPcYF2hiPmG+5S/9h/NPHUYoYj4wThGzajXEKv8qC6BOMS8Za JaIsSUKIp7yl5HyR8cM4pn8T9ov1ln6P1xlB/ytfCZEhAT5BPy4l+Ah9Fy+YE79RSsAR4hnSR+FA CSMtMHLFNn4q9szZRpirEO0C1vUQikslbOAN9Qg8tC98Au87UQNnnx0rOfQFPiiarK91jzh9gPEP 0Rcoa6klOdkmzGG8A5/3fsJ9FDG8kfBZ2pn+hFcdfkIIJN5+8AczBCSULcpJXvQ5+iftiHeTZ+Ev lXh/XFr92woE2EyIXV5/YdvocgTQXBNk/HgfFDHOQZxq2xzzOyuin9CPyo3nNPJMhh+nkV69aTAe MOCzDIAxhBzlfK7eNLJ6DuWGcevUqvkdmRoZFO8YfAcZqhzR/ShvKY8u92yz18jHI76aTatd3i+Z potXbG94JkR+Y2lkgkOoxZuE4EDnYVJnoDGZuXDNpIWSwN9YGrCI1NPhUQRqPeflIm/SZwLE41I6 6YIoVlK8NlgT8OA40fGZNL28MELS4zodkdAS9/rxDpM67n2uu+WXtLFWsCU9Anw5In2EQoQa8oMZ IRSV8naETgR/FATqh9KAIsOifAQnBFPScisvz3ONtAmrQzFBgfOF6GCPxZj1MliLEcDYKYhvcHLh pbTMjkfpdfKl3j/+cbyIHeUMIj3y5UMbJ0MZaUcUSvJHMcLjBGYIo+BNuKtjGafW968rpayLoy4I dgilhKnRRvQTmD3vUwYIwRKFFyEWzFgQizDksfK8Rx+mXD090SvRP5SdkCcUPxQwiPYBY/o0eNHn RfkhgFHE9heK2hih+/DD47wZk0xg3Kdd4T1YXblOn0Dhx5BC/6Ev0971Cjk877ylXE3x/Pt6WL9f i1f5c/7NOKIflhLXEPwZ74wP0kWpwHhBP8cLAx+ljvRd+AhjqxzxTKnXm3Bpn+hJB68SigzRARhO MHA5b/E0GRdZEeMLvJMCUbm8OGoCrx514h0MOfAZBFjGJO2LksQ3xLwDVhBKKes/4JGViDmBiAIw 9rYnPd6FX9OPwAieDe+CwBJjFoRSyVyI0gy/oIykxfsnnhiHPFEe8uC+qHgIsHaejc0Otl1wppi1 z7f9R1H7jVmbHzBtwj1mrK8fOnRY75yTRm3K8YM00vU0GGP0S6dKc7zfT+sbfoMhgl0AMSJhFCpn iGo0P/h/M3WgDMgJePkJ3wabeg1MjZa11vMoyn6OF/ycurWaKAPLT5g3ka2awbo/dcHw4WvI+/N+ f94pMyX3J5ls3nHFBqEAoZ+/GUxM2AjETDi2AWM0wWN1ZeDRuZn4mOzp4AiyCExMoCgJpOPWx0ql 5lkEaJ5NEhNwcuJmskMBxFpKOAgdxifT5Hv8xiOHYMFOVpWEahgiE64ZxnoFLoR73qNOlNvzx7pN h0XJoN4oJj/4Qfxsad6UC8GJ+jDgscCy1gkcKwk7PI8y5p403iUd2oDfTPKf+ES8gxqxxnguIepP /ZIYUz6UyOQifNLC0luOuFducuA6ZSZtBByEIQjhB2+FK3yEVtIuPI+QRz0QYrzv8A5pYElmB6Hk JEG+1I8DbBEOIXBmXQr9EIUJBQ7FkzblG88sChnKLt4uiPzBgTxJ39sNYQhhlzxgMuzWCMEMaXvK 69jxLJjRFrxDHUXZI0C/ceMN7el9O5kzSgQGEPqDncgReZ6xdKKAoJSxTshD52i7SuMsmWY9v+lH rqzzfLJv1fM+zzBG+dCfMew4UR8MO/AajCbwN/owCgG/qbPzN54pN0Y9LYw6jMtahDWWUF/qhHIL r3DDRa1307rvdfL0MJrhnfb5Bz7D2GPc06bwMgQo+DQKWi1Cia/U/qw3ZXzTFvATrzvv8KHvsL6W kCYwL0fwEXjF974X9wf4CPzIPyi99RoDyqWva9khgLKFF4xzDbcwKzNK2To2WSEIopA9akyFXV85 n41r8UZnS+2w+lstKugpK9iyyFiS5An9KS19yyNd+vN+tXeYHzFUYMx0gm/BZ32M+fU0v1F44Jfw Z/g5BH/DUNYMUWZ2ik2GYZMe8mE1IqKG+R1izIM35cLwDg8qwhhFDkE5ayXRl9m8DgMTMiLrr+Fx WRNj74477rD1uLfYvPiY8dsKDDejggzIKN2mk2VyYoIBDxQIrIBM7oScIBTQifFYMOHQqXmWyZJJ E+2e31zjHgOSdFCEmExRRqoRjGKPPWLh2J9DQGayc6sKSgEepB/+MN6BplZnoT4INYQi9vR4qvE3 A5F6kDZbSyOQQHwz2cNMsMyThhOMAIGedUUINAiN/p4/49+kjdAIs8DDs/XWMY5gCR547XgXJuMM mfqiiDGxky8f6kh5GCwoYJQbwRPvgdefPAihqSR8eJlo01LLud9DyAMLLPJJol1haHgHnGBgKIb0 B9rV+wkKNc9TDjyWpYyOerCjGBboJLlgxvoN6sl23YQQ0X/YeIC6Ejo6ZkycH0o7Chm4ElLku+ZR N/IGUyzXTET0SceFiYg06a+UgzamPcgjOWlRNuoxfXrsZeRvUbYI0PcRitkYA95Rjl9wjT4KT6Id Cd9DcaF9GUOTJsXKOfcaISZDvCCViHHGmi/CbuhbhLgxBhsleBFCSdLLhgeGcQRvw/MCMe4xesFL k9vD8xyGgkrE+HaeUOkZrtO3UWJRgMjD+Uy1d7K+x4ZK8FS274fgjYzxJLmRpdH29TR4D0GDcG7S Bwf6lGNGv0IRw5vlfIeIkEqEYYzF98yJECG1pEfaomIigLI1c+ZM86pfaAa45SaAPmWyQY/Ni8dF ihc7vl5qQgbnIj5hA53dplHGli9/x+bA5+zv16x9l0eGAYT7ZgiFwOemZtIpfZdNtDCQe9iu3+ca fDbLtUcYROEn8DMn+DpjC2G/vwQ/RIZL7gY5eXIcrQM/Zq1mMgKKfODVhA2zuRPEM4xXDD2lskn8 RPr/stb/zDPjsiRTR+YBp1rEc8gttQgZDSdCNUIOrpQny0/gvRjVMdShlOXBxxhvT1tmjMEFJsgy 1vIkE3uLSTAXLIUMHAYTigHfeCj4oGDQ4CgkdBAGiHcUvl2xYMAzydOYdHwmURSMWoTAzxoBZxYI 5ggupMEgZKKjQ/FNeZzI18vh1/im4zHoUFZ8nRATMnVC+cCzxT2EbreO4s1hrRbhbkzWpMEHpsk7 WKupPwI9IXg+kSfz5TfKJWEqlA1c+fA+igPY4CHib5QAlD7PC+GS/KgP39QV5QPFwcNwSJ91CG4h RhGrJyyLutOm5YgxAM6+eQjPwEjwPjI4sW4hDFJ/PHwoMeBIu9K+hInhJaSeYMO9Roj8wYz2wnOF osXfpE0bkQ9eOLAnD4Qq+kCSYaCs8j6YEj6KdZowCVd2wZa+ybpD1okRzokAiLJXT/9spD56tnEE 6O+0bbmxTGrwJTwWjKmvfS0Wqj2MEQWOsct4qaawlCsVY5s+waRejvCkoLwwZlGmMABgHKiX8PLi 8WWMswaM/kyfZPdE+rArBT6+qQehuSgGSUJJ6I8SmEzDf9P/Uf7gPY3Uxd9P+xvBFC832PCbcQ2/ SdKkSaE3bDV5vd7f8BN4GjupYjiqRPA4NvThG5wqEeWjv3m70Qfpw6LiIsBxGruYNfUEc72zLuyn tqsU5x2+YlaeF8wystAEnL1Ni+EsxJdtEOIZQ2AcahPLKaecbNFBu5tCNjQyBuGlLUf0YXhULXKv eLXn4BONGh/wvCflo2rp13sPHlYPUffSccvcCp8msqg/BM6c14pMgMzJh3yQEzHeoXBhLEOeQxGF 8PgzR6CQmu4dedV4hqUdzPvw9HK49gfvOMe+f8mb8zHpA8hT1J2/Swl+BDHfldNBmI+QV+DR8JZy 5eV98mEuITKkHMGTWEbCjrAYM0sJuY/12BjJKQcy/uDBpU9l8zeb5HzYhO1TbGLfx4RjPGV5konE xSWEXbfw8ZuPd36UB4R5JiAGGJZBFmrSmfhwHUGY3wwcOhKfeolOg8eIPM8+O36LPLG2sK2wW6+x FuPWdaUNpcQ7djIvOhQaP++TDoSQ09MTC/N42CAsKgj6vh7KBwCKKWulEBC5DzNBIHAFCutpNUKh QylBqMIqAy7gRggWgx5vI8oZXjPS8rDL0jRR+FB0KpFbZivd9+uEDjKwKxGDHSbnxKYhfCAEN5gZ fYE+MH16/BusaA+34CPY4o1qhMAFnGA41BWvWJJoRxg8YVwIqngA+EY4r0Yo2DyLhxLCc4ZQzDWU S1GxEGCcEWpXqY/SP9mYBqOQK+G+Zoj+QL/hOnyoEYI3wE/oh3hnSwmegXCDNxWjEIpbI3yN+YU0 mAgxLrDejXGFQPCFL5TmFitn5TzL8Iu0CCGGIyhQ7gg7byXBU2gDQhERKjD+0Nalhi7a3du70fKS HsINggeRDfUQ62vhPfUSngfmPVFxEUC5GmKTDR6ynp4ei+DYy5T/V21O2MD63CDjLSNsrv+ghba9 YcLts8ZPjKEY8d4bb7xuYbLDI5kHGQXBlb6L95Q+i9ANXyAaCGWeeaYa8Ww5uSX5DvMexgk3vCbv VfpNn2UuTYvgixhIMXaynp2xVIkwVrF2u5QoP+lgEEVuY7zXy3cIFwYnZAwUHaIJqB9yGLJV0miF LMdyCrBH7sMwDL8lqoH2wsCCvIVxvtz6+f7gnawrvN5lTuYJ+gRyC+cxUgbkPyJ/MBq7AyD5vv9G FmYuYr6g7hjsKvUDnBZgitKJQlUqFxHejfF6woTV+wXHNHEdRwjlhXxujf/K798l1jny9oxV6cr5 VbxcTgwWGh2hA00ZhoMAz4SNkE0oCYoEA4qOhDeEDgNDYhMEFAyEGg99KZdHtWsM0FJiAHnnmDUr vgsTY3dHBiSfSrtVwTQ8tMjTxjL6H/8Rp0Pa1IuOnyRwSBJ/u5KAgsWAZ4DAnKoRGIELBAOAYCCk RdkIywRjPGxgyCCibu7BKS1XnEL//62ltMEo2H4ehocSijUHJZGBiicMpggWCEWEduHyp81ZrOsE s4OB1Eve57DcYPnHkgQTTXrW6E9Jb4f/Br9qVNovsLxTPj7Vwo+qpal72SFAf2c8VqPSicafZfJ1 D4Vfq/ebsUyYB/2vHDHBElqMQkbIC0pjNYJfYc3FCwa/YEyzqx4CAPyV8Dv6e2n/TKaJoMCEnRWB MwpZo4prWuVxfkx6CArwEcoEVvCENIVJ8oDXs8YZA2K9hFGyEYKvtwrPRsrZ7c+iWOH52sMmkP3M TeJ/843njHAp1pRtZWETPIf1HoI/Iewi/MITMAAR1k9fZh5njuQboyXn4MGPMG7iSUcod6K/8ww8 q5pAzvMYHzCalBooPa1GvxlX8LtGCCM1sg48DYMS83EpTZ8eX0G+KVcnZAv4InIb6THekXuITAEP FAmWffAbHunE38gCbrTC2MHacowq7KZaSh427N45eAneMD5OYIAMU47HINegTPUXb/CBj5E+664w 4kMYGSkTfOjrX4+XUcR3yv9LH0P58vmQciF/83dPz6rLJ5iTMC5j4ENppl9icMKAznINPIdEChER QP5OLLvBwQFG9FW6OW0L5t0PzibmAAAgAElEQVRCJoYXk2gUrNI0oHccBHg6AB+UBAQRBlCSGFhY NXGTwoxIh2+oPwpFssOQBswOy7IrZaTPACXfauTPURaf/D1tOi+ud0J0iJX1cuKi5T3Iv7kHg5g8 OR7AtYSx6OUK/zAoncCTPMCTUEQIpcw9A7Usa/Eb6f0LNmCFhw5XPlvz45GDkcGcEDQYqDCa0nVf /S0FDIAdfMgbyxdWJHDJglDy+Hi7ZpGH0mw/BOhvkyatKmQQioshAsGC/pIUMJyHVKopghrvuKWR 34xlBDSOYCCMCCHNJ9py6dTyupd7p5FrrVQcwA8+C04opnisCBWG4NNsFOV/x1eb/xdeT5pJoaz5 VJVCuyKABR5Fi085IjTR14sl72MsQA5hTNNP8brQl+lbGC0Ji2fTMgRdBFwEZXbcxMjIvI5BEEM3 XqF6vKjMj8gfyDrVPFLJMvKb8pUj1tnafgkV146XvkPeeLvgW5QbJaFUGaNsRBlhrGKJRyVi3CNb gBFGNZQDDCQQcibKBtECKBIoMRwzwe8kn8SQivEXTySKXzlyRYx75Xg116ZNizeBK32/3POlz1T7 m/ITGgm/QZlCMYJ8PTC/cWhUConnPjR9ehwd5kZj+hyKHhuzsPYOPklUGgZE8kJ+pC+CF0ZqFEry 4D0UevBGtnMjN+Wkb6IYEm3C/Mc8yDIg+ni30KAiV5TBB8EocAfDRJwqhQN6B2YQsH6JDuhWxWYV CpgKHQmrMgoZxCReL3nZeJfB7sRaAEJiSJ86wyi/+c1YSELZcHLBig6Kwok7OCmY+XP9+S5nmYHZ tEJgAAcGKkIabebhiUw0tCkTDX0CIbXC/NUfCCJrDO0Co2Araya1Rtq3kUzpR0yQ5CUSAo4A45kJ iVBoJyY+JjfCixmTPlaxUBL6QthJJWLiZZIr9bRh/WU7fowaTNRJC3CltDrxOgICQt1//VeMB5EG HtqEwIm3gfMC0yS22U4KdWmmrbS6DwG81sxTKASEDyNDsN6dZQfMMUSYoEwgEOMV5xv5gbmOsPnS zTUqIYhhnLQx7NRjAKVMyDzM4+WI+TW5gVC5Z5LXiJKBXyHT4flLeumQhVhLS+g24YuM62qeYZQo xj3zMLIGCh4RCSgXLCEg0gpFAg8cnkMwnDChzyvm5YIH8+kvUUaUv9INgkgPOchlxmrpMzew5AEF hpBy5CQUSPBA+aEeY8aUT6G07OSZJNKi/iitybIQacFO1ERZ4UWknzFnTZoUv/2Zz/SlAj/FsI/8 7uteUcSZzyAwpx8SxcSyEozvyHXuSXM9IH66c/8d1C5VwwLCuimn5G+/RqO5oILQ4qF7aSkUWIYI 6cGSjLKHIO3xx16Gat90MGKKYQBf/WrfYnUGEWUnPX7DvDgPizo4cd8VUB8wCG7lcPB3Gvl2q0cj 72T1LDhjTYFZooy5BaU0P8J8wDItAlfCJvhm0oKZUZYsiHQRkpOWsyzyUZrthQBjH0E9aRGkT+LB wtsPH3DPOn2HMZKcJEtri7cdYxQTnBPPkz68BiWMvtiIpdvT6ZRv+AsbGGDwI4TJQ6cQvrDYps0D pIh1Ss9pfT3wBCEQwxdQUhCM2X2OJRCsV4KYIxHYmdOSa5MIo2uUkK98fNR6lzxRipBbyhHyUL1p 8T7LTnxZAGMyacjkLEB4GQJ8tZBrLweCP0pAUrZIroNFWQNLFAgUDF8q06xB3/P3b/KnTQh17I8s AB8nmgolBnmRjZ1QIJFdqKMb2epdrkF7IP+49xMFFcU3OcdQToxXHj7JukRXsrxepd+ULfkMCihr GUk7uYERMp0T/dnXT/u1Tv5uG2WsnkaA6SSFjnreqfSMKzzJ+whKxBjDkLCkYIVh4OMWr+VBIT2Y B65bOhlpwUAhOjppIjQR28t1QvCSyhjnUxBWyLN+VkX8djr/VnPpp5ND/akgGLK+DmGxHIE1QhMb rKRJ3ka0DYwmuf4szXw8rTFj/Je+hUAfAkleQtgHky2CAmscsCa7N9wnzL43V/8FX0F5S06mpM/E SD/Hml5PiNLqKXfGFYRFPASsS2UdKrzZhSKiElhLkoxO6IxaqxadgADzFcIz3hXGNMoDxN8IyE7I KmkRChzeYz9wvFK6GKzdaFTpmVLBv9JzXGfDMsL6XbFD6UKQZ+kC+cDHGqknz1dT2lDAIGQAeAAG FHhDFgRvb0TJQ9EmugoPJV4n+oE7Hti6ns17iOxJKpf1ltuPHHDvJ+Gvpd4z5FJCXJ2SSpZfq/WN jIui9f3vV34SRRNcqF83kHXjziE290hLGYNR4P53CzWhgwg2uG0hhBsXcBBqannIUDDw7qGQ0RHp YHQ03LVYiNxrxpolBhZCQpJgHjAd3q2kpCSfb+ffYIPly5mfW6Z9UIIboQRpE0IXjIf2TArEaeej 9IRAvQjAL5j4WPhMuAljIunF8jFRLT3nUzzDb3gNllQMGvR1Vz6qpdGp9+CpvoYLQ1jSggxPZ9MT kRAoIgLIJgjPnLNJmJgL9AjLvklX2uUmygivSyXCw8OmFhg3ksbkcs8nBf9y97mGZ5p1ZQjuvhOx P0sYJuOTHQF9czK/l9Y3/AFju6+dTyvdZDqsb4MX10usAQQ75gU/n9TfJS28YSg5zXjg8dhh/EMO cu+a55HGN32X8jH/VCLkZQyFnS7vev07Shmj4dLqOAgonCME0RmwmhLGQuw1eWCVRhDiGysN4YLV Og1CVOkz5MHgIQ0IIYtYbiw2pQtTcd/irWHQsm6q0wkrGDsUITQSG87k4kIoTN5d5GnigALOglZC ElwRTDN9pSUE+oMAfIIwYqygpRNsUtEqlzY8Cb7D+1hUWR/G+oRu4CHl8Ci9xpoKBD3wIXQm6Q3v dkW1FCv9XTwEkB34MB9mueOp1xx+wjxZib73vXiTDebPavKQv4+Bu1J6rDM699x4yQLnUiW9Mf4+ SgnrpGrxQX++v99Zp1+uXOUMbRiOkAHZWRyDNHJi0oBULp1Gr7mBynewbvT9ep9n9/NaSm4rcK+3 /Gk/l7syxvkZHFrItxO7CXHeBp+89/b3MpR+w0zYVp/OTlHZzhRBhr9ZNI8bHiboA6aeTpN8BouD n1FB54dxuVJWWhb+Jl8UBRbOpuX9K5dPUa6BK2GneDvZqQdBspalLY2yI/Amt/5NI02lUQwE4C9r G/f37aEpFdtGc40Pv4tAbjFm4w54D9ZmQk5QGJKeGsKRCF1Orp0oLT/jCN6BoMZaEjYGwsCRltGq NL92+xtFF74OsRGKjDAxFvq3+AgwtomYSYhSmRea/PBqsFa1lFAUYKHwGDwrrHF1+aj0Wf+bHYsJ eyxHPT2xgYQNRroxVBglFfw8OguMUFCTmHIAdRZyEdhjtEPRzYKY45K7eVfKI1nXSs90yvVcpQ8O LeRk+TttGxVOlHeFDCHoPttr+V47BIPzNYpAeNkQYiDic53hUTwYEi5zlAV3s9ZTbH+GEEQWWbID DoQw5Ts/xlcq/0sH7hZBCuUUJRXPI8zY18pURkd3hEB5BOAxd9mWpZfZ9l0P2p658CIMPxzu+Ftb lMXnddN6imAMgqfAK+j/TMSMd8KDMOagPDjBk1DICF2uRPAwdhcjNBEBCs8+/EsUIwDG4A3O8Bjn 58JHCBQdAcb0pEl94Yl5lJcxAm8qt24dRQH+RDg1v3mmlqzCBkPs1pdU7tgtGU8Y51Sxlh0jdDeS G+Uw2mP8h1gmU+pNShr546ea+5dwV+aJ0rVizaWqt2shkJsyhpCzyGLPbrNdL1601YHXX3+9dbAF kZV6hgUGP2Ij8inb3uZvto85J9IXgWA6rFdiC3Ws0xCTNpYIwgvZ2QdhB6aI0lBNKOJdX+/F4EEB IxQPdzMMi0WQWJNEMbPHcwhOYItizMYFfIuEQKMIwHveNOngVXOB7GixaLfavrzzzIyLh+xPFoux oWknW1scLPzHvWP+3WheaT4PG2Q3K/o9i8jLETyFcVKJUNgwYsC3MALBY6p54Cul06nX4S94w+UR y7eFMYaImkeg2thvPvXyKcBLyoloyEiuKGDw+fWv47Vs5VOJr+L9IS1X7pj3Of8LuYi1WknjU7V0 OvUe8icHdSODwrfZbMh3lMyqzpx7yzmUWXjcsipzJ6SbizKGMITgQ3jicRboOmnSpEjomW/mELxj CEF7mjays2k4Y+1gnLcYkUbuOWsV0K5cwfD4EJ6IJRrFC2UKlzxzCh4yPGWl6zlKy03nZntZrEYw G7ciwcB8Y5DSd7rxb8eJeHKoFRNOnHNn/1uksOCskIb3jDBz7kizeBxtpxcfYNuBwVf8EFWUtMU2 mDEQoagtN0mDd/CS4b3HgNQqQkghe6zRlQhFwncYq/QM7JSDSVl3yRlmLvhUer6brsPjsQRLN8in 1RlvjKuX7GCookTB5FPzbHLxaJtsUi+fKvKOe2p4gp2fIRQFBHmITTUoWy2ZKH46lqX4TWg2yh7G bikDsZxpfotIPuSQZTyJjWz24fg28o18SzSFK9aNvKtn+49ALsrY26bS33333RaaN9cG2PAoJHGY 9aiNTYqAIaN83WRHw8+0k0gJJVrLzCV4x/CYfdf81bdzRHcLyHcn4rwM1lxgqcE6gULG5I0liOu4 0X1zjWrFpIOz6xECADsBYY1FMIJpkaYoRgBrELHKMGUUMpRXUXoIMJ4YV9+3LZdQRFA+OpGo11Jz fRCaiMcdg9DNtlvDduZmhfdwH2ULLxk8B2+98x7Cpi+66KIwa9aslkCDoYfQndmz+wSVcgXBoIP3 qxrBZ1DqMPhgNMp6Mq9WlqLdo+u70a1oZevE8rAUgXF1hcVBuUGkE+vZyXVChjFxLSJ4CrsnXnpp bNTwEGjkmX//98qbc1TCh/Vj/Tn/rFJ67X4dz+Fpp8XyIdj4FvZZ1gu5t9bRBVnmn0wb3oxy2KEi SrKqocY0vsqz/foDgecdQ7SnpyfaoOM502xgyP9kh2J4qAIK2UmmqWDBnjx5ssWqHmFKz9sWe7yH dcTTTHgY1q+8m33JLTMIRXQGlC/Otvj0p2NFwYuFZRrFoRaxWxeLxTk4GgsHih1CF2ePsT2tqA8B PI8ouuwUtPnmfdf1q3kEGFfbG7Cs37zEFi52soUaHjNmzBgzdqxvltsb7PDT52x95vsiDxiKGDxn H7OMYBCCR8GvEBIPt11czuTQlhYRkzA7uBKi6AJOf4uCwobBh0NOW1il/hY/0/fqXUieaSG6KPFD LN6WD96xH9ghUZ3MexppVrz1HgmE7AM/IlQa45AThqWiEPwEgqcwhvBkoSgwZ0N486t59OOn4n8x uA4eHG+jzrb5yFiiGIHPfjb+JrqBvQtc5swSH9oti92q+1NmlvAQTVagrt+fatT1TubKGMwWhnKy SRWEKJx99tkWFrJBuPLKKyOBB6v0QQcdZIf6XRMx5gNNS4ER8R47nLGeo5WEEoYXDOaDhm5RlBHj oEz8hvww5viv2v+azBcdWEwsMDukcQK7aHUEUMgIwxKliwDeaT4YSVA+OpXgIQg4+9n2o/AevF2E K/7RDu16j+1p/orFxBxjJ61fZ2cngMNE4/rwHsi/W4XNY4/FE5CxxtRIoXirQ0koKBO+KF8E2DhH FCOAwYilGnjt+Q0fQkaCf3GNe5uaxoOByAm2zfyIXJI3GUuNiLz//OcQPvjBWI7pbzn23z9Y5FS8 SzRpd/s6sXI4YshnN1xXdss904nXqC/Hjaycljuxir11ylwZIyeYykLzZyP8/astWsDyw2+ULbxe 61gcDWFDEEyI+xDPtJp83RLlwPVezmrTiDxLlVhQjwLGQkwxnla3cPfmz/qoTid4Dx4wlK0vfelL kUeMa3i/4DVcP+OMMyIYnC8VARMEHbZ9FgkBIdD5CBAuzppWNjW78cYb7Vid08MTTzxhAvjTZuz9 WHjMrDN4xjBsw7PWWGOIRRfV731KE0GO10GOsWW2Vo4+43R/8yD6hbM9iRJCMROtjgA+Cc6f7UZq RZgiy6SQE/KkXJQxrxBudxQwJ4RBX0y/3kqtBCGpCDuZeRnxYtEmrGFi4SpnLzRLMDLWcBRA12y2 KnpfCLQNAnjHkuTKqBt/uOeh08nnWvGboy7Gj29FzspTCAiBvBBA/oHnsHkZa1ofeOAB837EsX4o XWx0crltL8g6V0LLuYaMdNddM804vLPJTxixzb2bM+FlJ0QRBarZI2cIQcM7PWeOlmtUa0YUX1F2 CCAH3H///ZHBliULO+SxQC9RHRtK+RICkH/I2bXP5LV8S1Q9NxQxNHPC5VDG0iLCY+rdaSitPNsp HXBf6SBtp2KrrEIgFQSISEr7qAsZf1JpGiUiBFJBAOs7m5ZdeOGFUTTQM888YwrJnGjHaTcU4dX/ kG3jzNmI7PiK4obQ+MQTc0wZesl+x2HVqRSogUTgJdi20jgSgtDEW26JN+uqd51ZA0XVo0KgLgQY Vw899FA01jCC5O0UytUzVhciBXvIrRFYgNIiosM4yJiNO0TlEUARUwhneWx0VQj0BwGs2SIhIASK gQDCH8dpbLvttlFI4m9s7/KjjjoqWtLB0Ros0xgzZkykhPEbLxpKGks7PvrR08w7NszCFltTFwzJ v/1tCGef3Xz+XgeWgPimac2nqhSEQGMIcNTPP6/cpICQYDzQeZKUsRpo4xVDMSCsMG1yRS/tdDsh vU98IthE1Ak1UR2EQOsRYJ0H29qLhIAQKAYCRAWxmyseMrxihEU9//zz0Rp6FK/NbNCOs90L7rnn Htt9+cDeTT147/XXF1rETmt2mQY9zhM755x0lCfWQ/3iF8VoE5VCCIAAGwwREpwnSRmrgbYZqsK0 aX2HGdZ4XLdTQmDXXVNKSMkIASFgAp/OMlQ3EAJFQwCPF4LfXrYofbwtEkXRwirPN56zPffc0zby 2Tfa3ZXnirKmFRw///l0whRzlnmL1gVUnhoI4Ayx4dDxJGWsRhOzu4/tvm/hBDUe1G0hIASEQEER YDJjUhMJASFQLASwwKOA8SklFDA+RSOWWXAYsUgIZI0Au5izrrDTqQuq2FwTsm6Jg1dFQkAICIF2 RYAziVh0LxICQqD9EWDdeSt1NHmz2r8PtUsNJk2Kd+1sl/L2t5wpbkvR3yIU/700GQ9pSTAqfpur hEKgkxCwc6/tWJFOqpHqIgS6EwGMKmwnf+SR3Vl/1bq7EEhz87wiIyfPWM6tgyLGrkFpbAmbc9GV nRAQAm2KAAvuRUJACLQ/AoQccy4XG1+IhIAQ6AwE5BnLuR05q+zrX0//DKGcq6HshIAQEAJCQAgI gRYgQJiiSAgIgc5BQJ6xnNuSUCGFC+UMurITAkJACAgBISAEhIAQEAIFRECesQI2iookBISAEBAC QkAICAEhIASEQOcjIGWs89tYNRQCQkAICAEhIASEgBAQAkKggAhIGStgo6hIQkAICAEhIASEgBAQ AkJACHQ+AlLGOr+NVUMhIASEgBAQAkJACAgBISAECoiAlLECNoqKJASEgBAQAkJACAgBISAEhEDn I6DdFDu/jVVDISAEDIEBdnokn3fs1FQ+ToMGxWzw7bff9kv6FgJCQAjkhgA8aK211oryW7p0aVi+ cu/6IUOGhDXWWCOssMPFlixZklt5lJEQEAL5IpC7ZwzmMnTo0MC3E4xo2LBh0ccFI7+nbyEgBIRA swgMHDgwLLYT15955pmwbNmywN8QAtDcuXPDCy+80CsMNZtXnu8jpLWTEklZKXM7kLBth1Zq/zLC i5599tnws5/9LFxwwQXh1Vdf7TUc/eUvfwnnn39+mDFjRnSt3Wo7ffr0sGDBgrYoNrjfcsstbVFW Cils26ap6ipo7srYlClTIoZDR3JL9SuvvBJdgxHxm+tFo9deey1iiEUpV9HKAy5MGJSrKKTyFKUl WlsOLMsoYtdff3249f+3d6YxtxRlAu4rEAzuIAquV0VRISKIorjFXXHFqNGIiYlxSTDGX/4nMWGS IY4Jzk81uERxRY1KXBITV7gqcgVXDEhGwxIkUWDGweHO95R5L2XRfU6f+53TXd3nqeT7umt/+6n1 raru8/3vN1/+8pfTKvMRRxzRXH755c2ll17afPOb32x+9rOfNVNbDPrTn/7UfPKTnxwX8Aq5f/zj H29uvPHGFWKMF1S247Hftpz/+te/Ni94wQuaU045JfVFLFZT/37/+983b3vb25qrr746tRvmRvRn +WJ2zaz27dvXsNM3BcPOI2PAVIxsN1dSY8wDBjumGBOiBzzgAc3Tnva05vOf/3zz2Mc+ttm7d2/z 9a9/vTnzzDMTWe7f+c53pvsxgHQVLw31pz/9afP85z+/K8ig7rXJw8PD58QTTxyUw6LMlGcRnSYN 6LTLuRtWnvl72ctelvqcCy64IC360P/85je/aZ773OemY0E///nPmzPOOCPt3Bx55JGTwMKJgikd X0LW+9znPrLdAIEpsWUeMJUd0g0UVUqS52dnnnnOySef3NDnXHXVVcnOMWoYYVg8Isz97ne/ZL/t ttuaK664ojn22GOTveZ/7Pjt37+/Oe6442oWM8mGrPxRBlMwst1cKV177bXN4x//+M1l0JLyIMpY rOSwEv3MZz6z4crkKN7feNzjHndw1+mJT3ziwfc5AFJLw/jzn/9cVUOtTR7qVnQO7G7WYJRncSmw Q3H77benldbFIafry6SGFeb73ve+afJCn0L/88AHPjApYCwGffe7300P+JSnPCX1PUyKfvSjH01i snjrrbemPnIqE9sf/OAHDZPJmGjWXLNku7nS4QQFbXMbFoO6KKKIsTP/q1/9Ku1+3XLLLaktv/a1 r01s6JsJ86pXvaq5+OKLU199//vfPy1mf+c73+lKtip3XknhqOUUypk+lLHhM5/5TFUMu4SRbReZ 3bszPh199NGDzgE2rozRCNmm/tSnPpVWf573vOelbfjTTz89rZbgj2LB6jTmyiuvTFdAMIGqpWHQ UJmkKU8qntZ/8PnezvHTWjpe5Wktpn9xZJd6Su8c/YvwSyzUwzvvvDMpW0996lPTu6ooA2984xvT +6nUj1/+8pdpJ55w9FH0Q6w4n3322UlpWJLF6N4MGk94whPSMczRhekhAOzzDxT0iDJaENluDj1s n/3sZ0/mCNsmSNDvnnDCCc0jH/nI5o9//GPz2c9+tnnpS1+amNBG8Ge3k0UBrvRnKLD0UfzhX8tY G3yYJ7GLx2I7hg+RYMedd3VrM8gZH0thPIAnrHEPv1o4IxsbGMgDUxR1ZGfsQonE1MA4rwPIx1/t bGEZ/Ch3eP7tb39LPHO/FGhD/zaujEXBvPjFL07K1cc+9rHmjjvuaF70ohellR46F0y8a0R4/uis 3/GOd1TTWdMQaABU/BpMXrnHlifKmEoLH/5qGCRoVJjobMfilPOhvtdyhp46RFnxvsIcDdx5t4Jj z7wzdt555yVFi5XaZzzjGem5UdI+/elPp8fnqBBxWH0+7bTTUj8V/VNNfGhbLFQhK4MvAzR9U0ze apEV+RjUaIdMcFjJjT6UescRSwzjQS2ckRFZMbUyhisckRUDP/remtnSDqOO0v/BlvqK7LXW3wR3 g/8oR+Y5lN1ll12WlDJ27ilX2s3DH/7wtAvGu88cnz7++OMbds94f+wRj3hE6qfGHttKPPRNTGL5 IBL3HPW65ppr0j2LRrT7WgyMGReQk/rJcUrun/zkJyf5OVFRC2fkov3Aln6TMbtWxvT3fAyFkzfU 4WOOOaZqtvQ/bAJx5TUbZM/Z8ioD/Dddf/f81/XXHLhjZzv8ttv/u7mr2ZxuRsVnkONdMSo+BcYu GZ0LFf4b3/hGaqO810EHBQAMcMZuwHlDoKOkEx3TUGno4DA18KEsWb2jAtP4KD8G2jENZcQgx5Eo lI4xDfUHOeCD2btzNA5mYxra429/+9skAquzm5wM81bakYf/oznplDPu8chXX3lZ8/d/7Kyc3sNn fQ7wpz4yuDJ5oW5QTxmIH/KQh6S+hjC0JRaF+MgQ9pe//OVpYjR2e89JIBeT2a9+9avJmaOV9I/0 l8jPBwBqmaAxebj55pvT1ypPPfXUdCSLfouj6NQ5+vyaONNf/OQnP0mTMdrnV77ylSoZ0/8zbrKo AOOzzjorlf/vfve7KtlSxigbfMmUsueP96Awm66/i/qeJMCSf/uv2Nf87107H81YEm433vQvzIkY p+iHWWDBjT4LN8oYd47/w43xlcn461//+ur6JxQFPsSG/A996EOT/JQ7diazfBtg7PkcZUX7Zjy+ 8MILmw984APpqCgfS6GuMjbgx7utNXBGJsyXvvSltIHxvve9r/nIRz5SJWNkZZ7Ptx9izs9JE75Y TB2ojS1ti4+2cFSYcZNxinva4BD197CdvvzwPXc2//4f/9kM9tlCGiAP/q53vSudj37LW97SPOhB D0oTCDqic845J/3xLgdfPPvxj3+c/n74wx+mQk21ccR/X/ziF5vPfe5zo0/sYYgWz+AGo7H50PiY 1PLezXXXXZcmMHRg0YGMVWQMCnw9jy/NxQryWLKQP7JQXihANPox+dBJclyP9xV+8YtfpPpEvZqr YRBg8EUBiMkgfQ4rdnS6uKHIUCYoCCwO8cI5X1lkgl6TYSKOgsPnojltgJ2vajHJoU+o5Wu0sGRQ ps9EwUF54AMpyMnHBz7xiU80j370o6vhHP3qRRddlOSGY62MKXOO9lNvH/awhzV8oZJV/RrZUg/Y /UKx4H1x6iqTHVb4a66/Q7Z5GLHAwrjJoh19EvMl+i3aEG74s2JPP/ae97wn+VE/iVuLiUUC+ifq 4mte85p0/JIj39yzYESYWgx1kDEAg2wot6973evS+8IowTVxph4wZjF20zfVyjjGWsr73e9+d6qn vH/9hje8oUq2zMXYvUUvQUYWuGhnY9TfQVsGBUWHQyOgg2G1h06HK3b+MExYaRT8jd2AY1IRK1Q8 w5iGysMHTzh6ReVBMUpcJr4AABdHSURBVKODHstE42N19ulPf3oqSwbfMQcJ8kYGlI2xO39kYSLK lv2znvWs5pWvfGVacRuzHsGEVUDeO6DTYVI39k7mEPWXSQ6TGq7wpy1hsPOHYdCDR63vYTEYs3OH 7HwtFCWChQd2GFD6a1h1hiN8qWccR2eBDe6sNIecjAE1cYbnYx7zmKQw0J/WzJi2yvFa2u7evXvT eMqxvxrZUg+ony984QvTO+PUURY8aq+/1OHaDPWS8SQWO8ce20o+yMZHR+hDUbhZCKVfxc54XNPC Fm2IUwQsujH/RDZk5C8Wb2vhTBui7+SoKnWgdsaMSfRHvI8NSxaM6O9rZctXShk3WTR80pOelPSQ MervoMpY2Xi77HnDGLsBx2BCQ6ih80OeOG/PigMfQhl7Is0EkXLibDuDLB0Hco5lkIddAlZiOYY2 piyhGNIR/frXv04fiaBjwn0sQ96UE0fd2NFEoZ/zztiqnBmcx6wzi+SlrfM+G7sKrOqy40rbQ+ba DHLx/l3IBtO4pw7WxBnZ+GgUZgqM4ccCDztNr371q9Okt2a2TCK/9a1vJQX8Fa94RVLOaq+/tbUn +mzKmPGfa5R3LXIiDxPb97///c173/veNMZw3A9lnF0dFmRqMbSffBEO2ZCRP0760B/UxBl5UGpR GuhTa2ZMW7/pppvSYvib3vSmpECymVErW+b1zF2ZK7JYfu65545Sf6s8mxQNg4ZbQwOOhkBnWIOh svNL8ZzFZbclVnDGko0yopOggzj//PPTTtBYChmdLJ0pP+LLYM9xHnbtYEY5Dm3yAYpVlw9+8IPp mMGjHvWoUeSJ56cuv/nNb07vH3z0ox9tnvOc54yu1IdsY15RSvlJBCbkNSqo1GGOdzO4MZnATn2/ bueIMFfqeS0G2egX6B9gyYJEyImixrskPEMtnGmrTHhoGzBmUadGxkwe6Nf43Dk7Tqw+s1peK1vk 5Zg/7xUz2eEYEBOzGtnW0nZKOaibjPew/PCHP5wWYKijY4xppWy5Hfm+9rWvpdcVaD8veclL0heo kZOF41rmUMiMTDFP4V0hjlQzf0Bmvm5ZG2f6duTF8E4W77TWxhh+9Pcf+tCHknLDNyJ4BYArpja2 sYnAu5h81Iv+n/Gfheqh2Q72AY9UEj3+MTDzQh3vFWBoJGN/fpsOhlVI3s9C02cQGctQQZCDwY1j gVR0GI21OxYrTHTAdLR0cBwvZbI41kDBwMXuExMW6tLb3/720fnQeTIxrYEPbYz3d3hfDFabbmPs AY75AY++bZV2zoQRRZ56jRLPKuRY9bhNbmRktZnfGWJw5jeIOFLBsVOOVjKgUKY1GGTlvRa+EMdE jHeB//CHP6TdEc7p0yZq4ky7iB+K58j8t7/97SoZMwbw/intl485nHTSSUkR53g/Rz9rYhuTM94R ZNeEyQ/jFnWB+rHp+ruo7+nTRob4gEcfOQhDe2fBhV0HPi6AQluTchMysjDA0XyUR/pPFgmoB3zC f8y5Uxtn5k1wZb5y/fXXJzn37hz95UNOvJdVE2fGIcobWWtmzPjDOApb7il3Pp6FqY0t9ZK5Igok ihgLHNQH3ssbov7mH/CoThmjwBhsovD4+gqT2LFNNISxV3GpPEwUqDz8sZU+9oSRysuqd3TANQwS lBNlRt1BvjEn1DXyGbKNLZoQDfE1xVX6DsqK+ouJXZJV4g8RtpSRsmRiy8CHzDUZ5EI++iq4YmdC EZMKZK2FM30EMjJhRM68HtTEGDmZkPEHx+jjamXLmJUf+UJeZI+y3yTbRX1PEmDJv5qUMUSljPmj rfNXoylljDnTWAvGixgFS8LkcpbPsCiNIf1C3lK+XPYh5enKK+TBnz6KMQtDHShlTx4j/gt5ECHa VHDGHs+yifqbK2NVHlOks+alPwz3NRgGFFb1orDGkomBmBVGVkQxyDO2TDQ2jspw9A5ZsI9touHQ kORzz9KosY3dU8rhXai7rDrWbEoZa2hvXbxoeyhimFJRjDbaFXdod/r4kLVmxsiJwpjvMpTjZE1s GbNYfc5NLl/N9TeXuYZ72tPY49kyDqWMeVkvizu0f84yl7N8hqHl6sov5C3ly2XvijukeylPbi9l H1Kutrza5AnOhM9lb4u/LrcqlbEhAawCMi+gVeKtO2xb5Vl3HqumV6NMPINl1l6STOiYJDkRauej qwQkIAEJSEACEhiCQJVfUxziwc1DAttMgB1D3j/QSEACEpCABCQgAQmMR0BlbDz25iyBUQhwpJSP J3zhC184+JsqowhiphKQgAQkIAEJSGDLCVR7THHLy8XHl8CuCXAUkRdROfPMThgv0fJ36aWXNldd dVV6ib5812TXmZqABCQgAQlIQAISkEBvAu6M9UZlQAlMiwAKGF+55GtlvEDPJ9D5TTq+vsknXPkt FZQxlDaNBCQgAQlIQAISkMDwBNwZG565OUpgrQRQtvgYB7tefGGNe3bE+CFDfufprW99a3PJJZc0 Rx11VHP55Zc355xzTnPaaael36biC6Hujq21OExMAhKQgAQkIAEJ9CbgzlhvVAaUQH0EUMD279+f fqBy3759aScMRYyPc3DF/y9/+Uva/Tr33HPTlV+Yx50fi80/j13f0ymRBCQgAQlIQAISmDcBlbF5 l69PN3MC7ILxu3MXX3xxc+211x78cVV2wc4888yDP7DIUUSOKnJFEeOT//ymkkcUZ15BfDwJSEAC EpCABKomoDJWdfEonAQWE0AZO+6449IP6h577LEHfy0ed35kN37/jStKG1d/W2wxU30lIAEJSEAC EpDAUARUxoYibT4S2ACBOKZ46qmnNjfeeOPB3S+ywu/e9753c/TRR6cdsgsvvDBdjznmmPRe2QbE MUkJSEACEpCABCQggRUI+AGPFWAZVAK1EWCX68QTT0wKF8cQeU+MXTH+HvzgBzdnnXVW2i07++yz mxtuuCHtonGE0d2x2kpSeSQgAQlIQAIS2EYCKmPbWOo+82wIoHRx/JD3v9gFu+uuAzvPxl+z8z7Y vZLbnXf+Y+fHnY9qTjjhhB0lrL5jindLnMT2nwQkIIFqCPDDH/74RzXFoSASmCWBw9ML/Tur6ayo 7/xE7Cwf0oeSwNwJHLbTfjGH3eueU4fDD8PvQHPXzi4avhGW8EMY8qR/6TJH3OuuLi/dJSABCYxG 4LCdvok/jQQkIIF1E2Be9H9pAX1nweemG64/cOsttzT/8/edT2HvOWzdeZmeBCQggZ2e5kBz8iln SEICEpCABCQgAQlIICNw+Pn/dkFz0823/HNnzL34DI23EpDAOglcdJHK2Dp5mpYEJCABCUhAAtMn sGfnnZN/vmAy/WfxCSQgAQlIQAISkIAEJCABCUyGQPeLHJN5BAWVgAQkIAEJSEACEpCABCQwPQIq Y9MrMyWWgAQkIAEJSEACEpCABGZAQGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQ gAQkIAEJSGAGBFTGZlCIPoIEJCABCUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBl bAaF6CNIQAISkIAEJCABCUhAAtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlI QAISkIAEJDA9Aipj0yszJZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6Ay Nr0yU2IJSEACEpCABCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJ SEACEpCABGZAQGVsBoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTG ZlCIPoIEJCABCUhAAhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAE JCABCUhAAtMjoDI2vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj 0yszJZaABCQgAQlIQAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCA BCQgAQlIYAYEVMZmUIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVs BoXoI0hAAhKQgAQkIAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBFTGZlCIPoIEJCABCUhA AhKQgAQkMD0CKmPTKzMlloAEJCABCUhAAhKQgARmQEBlbAaF6CNIQAISkIAEJCABCUhAAtMjoDI2 vTJTYglIQAISkIAEJCABCUhgBgRUxmZQiD6CBCQgAQlIQAISkIAEJDA9Aipj0yszJZaABCQgAQlI QAISkIAEZkBAZWwGhegjSEACEpCABCQgAQlIQALTI6AyNr0yU2IJSEACEpCABCQgAQlIYAYEVMZm UIg+ggQkIAEJSEACEpCABCQwPQIqY9MrMyWWgAQkIAEJSEACEpCABGZAQGVsBoXoI0hAAhKQgAQk IAEJSEAC0yOgMja9MlNiCUhAAhKQgAQkIAEJSGAGBA6fwTPs6hH27NnTGf/AgQOdfn08Iu3dpkNe 60yrj+xlmHXmv860gs06GJfPrF0CUyKw7nY1pWefqqxDltmQeU21PJRbAkMTGLJdDpnX0Bynnt/W KmNRKRcVYIRxor+I0rh+UUbjSmHuEpCABCQgAQlIQAISWJ3AVipj5QS+TdnKw3DfFmYZ7kOJ05Xm OtPqykN3CUhAAhKQgAQkIAEJSGA4Alv3zliuZKHgdCk5pV8eb7jiMScJSEACEpCABCQgAQlIYK4E tnJnjMLsUsLKgiZclyIW7mWYSDv3L9MNv3BfFifCRzjilW5hL9MMe3ktw+Ofp1+GX9Vept837TJe m1xlmNxe5pP7xTOUYcLdqwRqJ1DW5751uYzHc5ZxI0zpHkzwX+SXp1mmFfZIqysd/MuwhxqnK49I P/zDTj7hxn3uXvphDxPhIm7Ywz/cw973WqZDvGVplXGWhe8ri+Ek0EYg6hv1LO4JV9a73C/SKcOE O9e28LivGqcrfKQf/mEv88jdSz/sYSJcW3qECfcI3/ca6ebhl6VVxlkWPk/b+3EIbNXOWFlBV0Xe Fb/LvSv9tvBtbl3x29zb4re5ERf3RX5t6a/q1pb+onw3Idei/NrkW/UZDS+BoQm01dtF9Tzka4uH X5d7xMuvETauud+y+7Y4bW6k0+Xe5Uf4rjhd7iFvW9yIE9cI25V/7t8Vpi2tMl5p74rT5b4o70Vx yny1S+BQCCyqY11+q7ojV1sc3Nrcu8Lnz9cWN9KKaxk+t7fdH2q8Mq22dAjT5d7lR/hFccp8tQ9P YCt3xlZdJSD8sorcN808nTzObhpLpFmmFw2zzR2/3D3CxrX0w72vCXkIn6eTu5dp5X55HMKFH9fw i2v4hT3SDXfsXX55ehHPqwRqJdBVp3P3Ntlz/7wthDvX3L0tjd24RT55HuFW5h3u5JeHxx5+eZxw 6xuecKXJ84n04trll7vn6R1qvDwN7iMd7vO8wp1r7t4nDmE0EtgkgbJOklfUWe5z/3Av63K4l+Gx h18eJ9z6hidcabrkIlyXX+6epxfy5P7hlsudx2m7jzj49U1rWZy2fHSrg8BW7YxtCnneUPrmUcYp 7X3TiXBl/NIe4eLa5t/mFuH7Xrs6A+L3Sb8tTJtbX3na4ra59U3PcBIYg8Chtqu+8SJctI2wl88a /qV7hO/yL91Le5lem3+bW8Rr82tzi/BxLcPk9vye8KU90iivZbjcHpzKOLk9whAvj0uY3B7hcM/v 8zBlHOwaCWyCQFnvyCPqJX6lf26PcLlcuX+4t7kt8lsUviteHie/J3xpjzTKaxkut7c9axk/whAv j0u43B7hcM/v8zBlHOya+giojA1YJtFYyoYSInS5h3/XdZV4hF0lfFeey9y78ljk3uW3LK82f9Ja Z3pteegmgaEJdNXpLveQr8u/yz3ixTX6ri57uLdd++aRxy3zCz/SytMr7RFurGsuWy5Dl3sepu/9 orS6/Lrc++ZpOAlsgsCiemkf0E18Ebcuvy737lz0GZLAVh5THBLwFPLq6vTGln3dcq07vbH5mL8E 5kaACUO007jGM/adTJTxIv7UrnN5jqlxV971E1ilLtsH3M1/FW53x/JuigRUxqZYamuQudZGvm65 1p3eGtCbhASqJhCTIdpO3CNwKEPh1uW/24eL9Mt0oi2HHLl/+OVu3ktAAtMkYB8wzXJT6kMnsJXK WEwi+mKb20BfPk8+uSn9+jJaR7gy793Kte701vGMpiEBCSwnsKjt064X+S/yW55zPSHy56hHKiWR wOoEDqUu53HKsdw+YPUyMEbdBLZKGaNxl416leLJO4dV4tUUNp6/tmdZt1zrTq+mMlQWCWwTgbyv inYdzx/2PEz4eZWABOZBIG/f0ebjycKehwk/rxKYCoGt/YBHNOBlBdU33LJ08I/OoivNLvc+adcS ZhuesRbWyrE9BHbbrrr6li73yC8Ir2qPeKtekadLplXTGiN8l+zhXnJcJGPEaQuDX+4f6eZuebwu 9zyM9xLYFIFF9Q+/3L+0b0qmTaWbP0ueR7hHW839uu4jTpt/ySnS7YrT5d6Wtm7DE9g6ZSwqLKjL ypzjL/3yeHm4Q70vG0ZpP9R0+8Yr8yuft286i8K15bEoPH5tcUq3ZWnk/mVc7KVbHt57CdROoKy/ pT2XP++3ynC5PQ+Xx8/D5O5xv8w/wq16bUu3zS3SLf2wl24RdtPXMt/Sviz/vCzKuNjDLQ+Xpxn+ 4Vbaw92rBDZNIK+jZT3EHm55uJAp/MLOtc0t/Es/7KVbhN30tcy3tC/LP+dRxsUebnm4PM3wD7fS Hu5e6yGwVccUAzsVOK+c+X2Eya9dFT4P0/c+z7vMN/frm96q4fI8yvxXTasr/KI8cr88fu5+KHLl cUhrt+nlsnkvgRoILKrTuV8pa+6Xt5MIh38tZpmsyJnL2yf8kM8W8uyWc6SD7H3TWhQn9xuSh3lJ IK97ferysvAQJUyYPuEj7BDXkKfPsy6SJ9IhTN+0FsXJ/Rblq984BLZuZywwUzH5W2T6hFkUv8uv Ld82t674u3VvyyueNfzaGv8q+UY6eZw2t2X+y+RalGab37L0cnm8l0BtBLrq9DI52+IRp8s99+sK E+5xXSZDX/9F6bX5dbnhHn677c/6yp5zy+OEHLnbsvuuOF3u68x7mWz6S2AVAl11dlV38myL0+WG e/jZB6xSYoYdmsCenYq6WCMZWqItzy86DItlyyuCjy8BCUyGgP32ZIpKQSWwEQL2ARvBujWJbu3O 2BglTGONBjtG/uYpAQlIQAISkIAEJCABCdRDQGVshLJoU8hyRc1dsREKxSwlIAEJSEACEpCABCQw MIGt/IDHwIwPZoeSFYpYXA96eiMBCUhAAhKQgAQkIAEJbBUBd8YGLu5Fu174LfIfWFSzk4AEJCAB CUhAAhKQgAQ2SMAPeGwQrklLQAISkIAEJCABCUhAAhLoIuDOWBcZ3SUgAQlIQAISkIAEJCABCWyQ gMrYBuGatAQkIAEJSEACEpCABCQggS4CKmNdZHSXgAQkIAEJSEACEpCABCSwQQIqYxuEa9ISkIAE JCABCUhAAhKQgAS6CKiMdZHRXQISkIAEJCABCUhAAhKQwAYJqIxtEK5JS0ACEpCABCQgAQlIQAIS 6CKgMtZFRncJSEACEpCABCQgAQlIQAIbJKAytkG4Ji0BCUhAAhKQgAQkIAEJSKCLgMpYFxndJSAB CUhAAhKQgAQkIAEJbJCAytgG4Zq0BCQgAQlIQAISkIAEJCCBLgIqY11kdJeABCQgAQlIQAISkIAE JLBBAipjG4Rr0hKQgAQkIAEJSEACEpCABLoIqIx1kdFdAhKQgAQkIAEJSEACEpDABgn8P8GAOhQY uNG5AAAAAElFTkSuQmCC --047d7b3a96040304b105008ad488--


This message came from the mail archive
http://www.auditory.org/postings/2014/
maintained by:
DAn Ellis <dpwe@ee.columbia.edu>
Electrical Engineering Dept., Columbia University