Subject: Re: Error Bars ( 95 % CI or SE) From: "Rowan D." <dr@xxxxxxxx> Date: Mon, 19 Dec 2011 16:59:51 +0000 List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>--_000_28CB7219076B3A4CA85146F6EBD94A990574FCUOSMSG00039SIsoto_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable A belated addition: it is sometimes the case that neither the SEs nor the C= Is of the means of two conditions are particularly important or informative= (over and above a description of the distributions) but rather that the SE= or CI of the mean *difference* between the two conditions is important and= informative thing to present and discuss. Cheers, Daniel From: AUDITORY - Research in Auditory Perception [mailto:AUDITORY@xxxxxxxx= ILL.CA] On Behalf Of Kim White Sent: 11 December 2011 09:53 To: AUDITORY@xxxxxxxx Subject: Re: Error Bars ( 95 % CI or SE) Coming back to the original question: CI's are calculated with a formula with the CE in it... They are different = ways of plotting the same results. Best, Kim White 2011/12/11 Stuart Rosen <s.rosen@xxxxxxxx<mailto:s.rosen@xxxxxxxx>> Let me put forward a dissenting opinion. What you should display in your gr= aph is neither of these but a boxplot which will give a true picture of the= distribution of values that you found rather than a statistical inference = which depends as much on the number of participants you used as any differe= nce in performance between the two groups. You are going to do a statistica= l test anyway (and you could quote an effect size) so why waste the opportu= nity to give more information? Yours - Stuart Rosen On 11/12/2011 01:18, Vijay M R Marimuthu wrote: When we have a d' group result (between 2 experiments), A. Which ERROR BAR is most appropriate to use (Binomial Distribution) ? 95 % confidence Interval or Standard Errors of the Mean. --_000_28CB7219076B3A4CA85146F6EBD94A990574FCUOSMSG00039SIsoto_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable <html xmlns:v=3D"urn:schemas-microsoft-com:vml" xmlns:o=3D"urn:schemas-micr= osoft-com:office:office" xmlns:w=3D"urn:schemas-microsoft-com:office:word" = xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" xmlns=3D"http:= //www.w3.org/TR/REC-html40"> <head> <meta http-equiv=3D"Content-Type" content=3D"text/html; charset=3Dus-ascii"= > <meta name=3D"Generator" content=3D"Microsoft Word 14 (filtered medium)"> <style><!-- /* Font Definitions */ @xxxxxxxx {font-family:SimSun; panose-1:2 1 6 0 3 1 1 1 1 1;} @xxxxxxxx {font-family:SimSun; panose-1:2 1 6 0 3 1 1 1 1 1;} @xxxxxxxx {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4;} @xxxxxxxx {font-family:Tahoma; panose-1:2 11 6 4 3 5 4 4 2 4;} @xxxxxxxx {font-family:"\@xxxxxxxx"; panose-1:2 1 6 0 3 1 1 1 1 1;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm; margin-bottom:.0001pt; font-size:12.0pt; font-family:"Times New Roman","serif";} a:link, span.MsoHyperlink {mso-style-priority:99; color:blue; text-decoration:underline;} a:visited, span.MsoHyperlinkFollowed {mso-style-priority:99; color:purple; text-decoration:underline;} span.EmailStyle17 {mso-style-type:personal-reply; font-family:"Calibri","sans-serif"; color:#1F497D;} .MsoChpDefault {mso-style-type:export-only; font-family:"Calibri","sans-serif";} @xxxxxxxx WordSection1 {size:612.0pt 792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt;} div.WordSection1 {page:WordSection1;} --></style><!--[if gte mso 9]><xml> <o:shapedefaults v:ext=3D"edit" spidmax=3D"1026" /> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext=3D"edit"> <o:idmap v:ext=3D"edit" data=3D"1" /> </o:shapelayout></xml><![endif]--> </head> <body lang=3D"EN-GB" link=3D"blue" vlink=3D"purple"> <div class=3D"WordSection1"> <p class=3D"MsoNormal"><span style=3D"font-size:11.0pt;font-family:"Ca= libri","sans-serif";color:#1F497D">A belated addition: it is= sometimes the case that neither the SEs nor the CIs of the means of two co= nditions are particularly important or informative (over and above a description of the distributions) but rather that the SE or CI= of the mean *<b>difference</b>* between the two conditions is important an= d informative thing to present and discuss. Cheers, Daniel<o:p></o:p></span= ></p> <p class=3D"MsoNormal"><span style=3D"font-size:11.0pt;font-family:"Ca= libri","sans-serif";color:#1F497D"><o:p> </o:p></span><= /p> <p class=3D"MsoNormal"><b><span lang=3D"EN-US" style=3D"font-size:10.0pt;fo= nt-family:"Tahoma","sans-serif"">From:</span></b><span = lang=3D"EN-US" style=3D"font-size:10.0pt;font-family:"Tahoma",&qu= ot;sans-serif""> AUDITORY - Research in Auditory Perception [mailto:AU= DITORY@xxxxxxxx <b>On Behalf Of </b>Kim White<br> <b>Sent:</b> 11 December 2011 09:53<br> <b>To:</b> AUDITORY@xxxxxxxx<br> <b>Subject:</b> Re: Error Bars ( 95 % CI or SE)<o:p></o:p></span></p> <p class=3D"MsoNormal"><o:p> </o:p></p> <div> <p class=3D"MsoNormal">Coming back to the original question: <o:p></o:= p></p> </div> <div> <p class=3D"MsoNormal">CI's are calculated with a formula with the CE = in it... They are different ways of plotting the same results. <o:p></= o:p></p> </div> <div> <p class=3D"MsoNormal"> <o:p></o:p></p> </div> <div> <p class=3D"MsoNormal">Best, Kim White<o:p></o:p></p> </div> <div> <p class=3D"MsoNormal">2011/12/11 Stuart Rosen <<a href=3D"mailto:s.rose= n@xxxxxxxx">s.rosen@xxxxxxxx</a>><o:p></o:p></p> <p class=3D"MsoNormal">Let me put forward a dissenting opinion. What you sh= ould display in your graph is neither of these but a boxplot which will giv= e a true picture of the distribution of values that you found rather than a= statistical inference which depends as much on the number of participants you used as any difference in perfor= mance between the two groups. You are going to do a statistical test anyway= (and you could quote an effect size) so why waste the opportunity to give = more information?<br> <br> Yours - Stuart Rosen<o:p></o:p></p> <div> <div> <p class=3D"MsoNormal"><br> <br> On 11/12/2011 01:18, Vijay M R Marimuthu wrote:<o:p></o:p></p> <p class=3D"MsoNormal">When we have a d' group result (between 2 experiment= s),<br> A. Which ERROR BAR is most appropriate to use (Binomial Distribution) ?<br> 95 % confidence Interval or Standard Errors of the Mean.<o:p></o:p></p> </div> </div> </div> <p class=3D"MsoNormal"><o:p> </o:p></p> </div> </body> </html> --_000_28CB7219076B3A4CA85146F6EBD94A990574FCUOSMSG00039SIsoto_--