Subject: Postdoctoral position available at Technicolor Research & Innovation, France From: Huynh-Thu Quan <Quan.Huynh-Thu@xxxxxxxx> Date: Wed, 8 Sep 2010 14:32:19 +0200 List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>This is a multi-part message in MIME format. ------_=_NextPart_001_01CB4F51.E0BE612A Content-Type: multipart/alternative; boundary="----_=_NextPart_002_01CB4F51.E0BE612A" ------_=_NextPart_002_01CB4F51.E0BE612A Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable A post-doctoral position (18 months) is available within the Video Processing and Perception Lab at Technicolor Research & Innovation (Rennes, France). =20 Technicolor (http://www.technicolor.com) provides technology, systems and services to its Media & Entertainment clients involved in the different components of the video chain (content creation, production, distribution and access). The Technicolor Research centers have developed strong expertise in image and video processing and continuously invest in this field. A main goal of our research is to anticipate incoming technological evolutions, outperforming current limits. With this goal in mind, Technicolor is investigating in the Human Perception and Video Processing areas. The ambition is to understand how users perceive video (2D and 3D), derive innovative computational models from this understanding and propose new applications/services. Target applications include cinema, television, games, web, video communication... =20 Technicolor Research & innovation in Rennes, France, offers a Post-Doc position in the area of Human Perception and Video Processing. The position is located in the Video Processing & Perception Lab and in the project entitled "Human perception". The core technology consists in simulating the human visual attention, by detecting the regions of interest (RoI) in images/videos. A biologically plausible architecture based on signal processing tools has been implemented and is currently restricted to bottom-up aspects of perception. The long-term ambition is to extend the existing model towards top-down or more cognitive concepts of attention with some tools, such as object modeling, specific detectors (face, text...) or even scene categorization... =20 =20 The context of this Post-doc is a multi-modal visual attention model. More specifically, the main objective of this research work is the use of audio saliency and/or audio cues in order to extend and improve the existing Technicolor visual attention model [1,2]. =20 Goals/tasks of this research work include (other tasks to be discussed): - A complete state-of-the-art in the field.=20 - A concrete implementation of a solution within the existing model (C programming): development of the detection of audio cues as well as their fusion with other independent visual cues. =20 - The definition/set-up of a complete test environment in order to conduct experiments of visual attention with human participants. It is foreseen that experiments will use an eye-tracking apparatus in scenarios where visual stimuli are presented together with audio stimuli. =20 The successful candidate must have a PhD (or soon), and specific knowledge in Computer Science, Audio Processing and/or Image Processing. Ideally, additional knowledge in Human Perception and a background in subjective experiments setup/protocol would be valuable. Since software development is expected in this research work, good programming skills (C/C++ on Windows/Linux) are required. =20 Applicants should submit a curriculum vitae, recent list of publications, a statement of research interests and examples of research work achievements. Resumes may be submitted electronically in either Word (.doc), Rich Text (.rtf) or Portable Document Format (PDF), and should be sent to=20 Philippe.guillotel@xxxxxxxx =20 =20 [1] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau, "A coherent computational approach to model the bottom-up visual attention," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 802-817, 2006. [2] Le Meur, O., Le Callet, P., Barba, D. Predicting visual fixations on video based on low-level visual features, Vision Research, vol. 47, no. 19, pp. 2483-2498, 2007. =20 =20 =20 =20 Dr. Quan HUYNH-THU Senior Scientist, Video Processing & Perception Group Technicolor Research & Innovation =20 email: quan.huynh-thu@xxxxxxxx tel: +33 (0)2 99 27 90 45 fax: +33 (0)2 99 27 30 15 =20 =20 Help preserve the color of our world - Think before you print. =20 =20 =20 =20 =20 ------_=_NextPart_002_01CB4F51.E0BE612A Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable <html xmlns:v=3D"urn:schemas-microsoft-com:vml" = xmlns:o=3D"urn:schemas-microsoft-com:office:office" = xmlns:w=3D"urn:schemas-microsoft-com:office:word" = xmlns:x=3D"urn:schemas-microsoft-com:office:excel" = xmlns:p=3D"urn:schemas-microsoft-com:office:powerpoint" = xmlns:a=3D"urn:schemas-microsoft-com:office:access" = xmlns:dt=3D"uuid:C2F41010-65B3-11d1-A29F-00AA00C14882" = xmlns:s=3D"uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882" = xmlns:rs=3D"urn:schemas-microsoft-com:rowset" xmlns:z=3D"#RowsetSchema" = xmlns:b=3D"urn:schemas-microsoft-com:office:publisher" = xmlns:ss=3D"urn:schemas-microsoft-com:office:spreadsheet" = xmlns:c=3D"urn:schemas-microsoft-com:office:component:spreadsheet" = xmlns:odc=3D"urn:schemas-microsoft-com:office:odc" = xmlns:oa=3D"urn:schemas-microsoft-com:office:activation" = xmlns:html=3D"http://www.w3.org/TR/REC-html40" = xmlns:q=3D"http://schemas.xmlsoap.org/soap/envelope/" = xmlns:rtc=3D"http://microsoft.com/officenet/conferencing" = xmlns:D=3D"DAV:" xmlns:Repl=3D"http://schemas.microsoft.com/repl/" = xmlns:mt=3D"http://schemas.microsoft.com/sharepoint/soap/meetings/" = xmlns:x2=3D"http://schemas.microsoft.com/office/excel/2003/xml" = xmlns:ppda=3D"http://www.passport.com/NameSpace.xsd" = xmlns:ois=3D"http://schemas.microsoft.com/sharepoint/soap/ois/" = xmlns:dir=3D"http://schemas.microsoft.com/sharepoint/soap/directory/" = xmlns:ds=3D"http://www.w3.org/2000/09/xmldsig#" = xmlns:dsp=3D"http://schemas.microsoft.com/sharepoint/dsp" = xmlns:udc=3D"http://schemas.microsoft.com/data/udc" = xmlns:xsd=3D"http://www.w3.org/2001/XMLSchema" = xmlns:sub=3D"http://schemas.microsoft.com/sharepoint/soap/2002/1/alerts/"= xmlns:ec=3D"http://www.w3.org/2001/04/xmlenc#" = xmlns:sp=3D"http://schemas.microsoft.com/sharepoint/" = xmlns:sps=3D"http://schemas.microsoft.com/sharepoint/soap/" = xmlns:xsi=3D"http://www.w3.org/2001/XMLSchema-instance" = xmlns:udcs=3D"http://schemas.microsoft.com/data/udc/soap" = xmlns:udcxf=3D"http://schemas.microsoft.com/data/udc/xmlfile" = xmlns:udcp2p=3D"http://schemas.microsoft.com/data/udc/parttopart" = xmlns:wf=3D"http://schemas.microsoft.com/sharepoint/soap/workflow/" = xmlns:dsss=3D"http://schemas.microsoft.com/office/2006/digsig-setup" = xmlns:dssi=3D"http://schemas.microsoft.com/office/2006/digsig" = xmlns:mdssi=3D"http://schemas.openxmlformats.org/package/2006/digital-sig= nature" = xmlns:mver=3D"http://schemas.openxmlformats.org/markup-compatibility/2006= " xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" = xmlns:mrels=3D"http://schemas.openxmlformats.org/package/2006/relationshi= ps" xmlns:spwp=3D"http://microsoft.com/sharepoint/webpartpages" = xmlns:ex12t=3D"http://schemas.microsoft.com/exchange/services/2006/types"= = xmlns:ex12m=3D"http://schemas.microsoft.com/exchange/services/2006/messag= es" = xmlns:pptsl=3D"http://schemas.microsoft.com/sharepoint/soap/SlideLibrary/= " = xmlns:spsl=3D"http://microsoft.com/webservices/SharePointPortalServer/Pub= lishedLinksService" xmlns:Z=3D"urn:schemas-microsoft-com:" = xmlns:st=3D"" xmlns=3D"http://www.w3.org/TR/REC-html40"> <head> <META HTTP-EQUIV=3D"Content-Type" CONTENT=3D"text/html; = charset=3Dus-ascii"> <meta name=3DGenerator content=3D"Microsoft Word 12 (filtered medium)"> <!--[if !mso]> <style> v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} </style> <![endif]--> <style> <!-- /* Font Definitions */ @xxxxxxxx {font-family:PMingLiU; panose-1:2 2 3 0 0 0 0 0 0 0;} @xxxxxxxx {font-family:PMingLiU; panose-1:2 2 3 0 0 0 0 0 0 0;} @xxxxxxxx {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4;} @xxxxxxxx {font-family:Tahoma; panose-1:2 11 6 4 3 5 4 4 2 4;} @xxxxxxxx {font-family:"Trebuchet MS"; panose-1:2 11 6 3 2 2 2 2 2 4;} @xxxxxxxx {font-family:"\@xxxxxxxx"; panose-1:2 2 3 0 0 0 0 0 0 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {margin:0cm; margin-bottom:.0001pt; font-size:11.0pt; font-family:"Calibri","sans-serif";} a:link, span.MsoHyperlink {mso-style-priority:99; color:blue; text-decoration:underline;} a:visited, span.MsoHyperlinkFollowed {mso-style-priority:99; color:purple; text-decoration:underline;} p.MsoAcetate, li.MsoAcetate, div.MsoAcetate {mso-style-priority:99; mso-style-link:"Balloon Text Char"; margin:0cm; margin-bottom:.0001pt; font-size:8.0pt; font-family:"Tahoma","sans-serif";} span.EmailStyle17 {mso-style-type:personal-compose; font-family:"Calibri","sans-serif"; color:windowtext;} span.BalloonTextChar {mso-style-name:"Balloon Text Char"; mso-style-priority:99; mso-style-link:"Balloon Text"; font-family:"Tahoma","sans-serif";} .MsoChpDefault {mso-style-type:export-only;} @xxxxxxxx Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt;} div.Section1 {page:Section1;} --> </style> <!--[if gte mso 9]><xml> <o:shapedefaults v:ext=3D"edit" spidmax=3D"2050" /> </xml><![endif]--><!--[if gte mso 9]><xml> <o:shapelayout v:ext=3D"edit"> <o:idmap v:ext=3D"edit" data=3D"1" /> </o:shapelayout></xml><![endif]--> </head> <body lang=3DFR link=3Dblue vlink=3Dpurple> <div class=3DSection1> <p class=3DMsoNormal><span lang=3DEN-US>A post-doctoral position (18 = months) is available within the Video Processing and Perception Lab at Technicolor Research & Innovation (Rennes, France).<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>Technicolor (<a href=3D"http://www.technicolor.com">http://www.technicolor.com</a>) = provides technology, systems and services to its Media & Entertainment = clients involved in the different components of the video chain (content = creation, production, distribution and access). The Technicolor Research centers = have developed strong expertise in image and video processing and continuously invest = in this field. A main goal of our research is to anticipate incoming = technological evolutions, outperforming current limits. With this goal in mind, = Technicolor is investigating in the Human Perception and Video Processing areas. The ambition is to understand how users perceive video (2D and 3D), derive innovative computational models from this understanding and propose new applications/services. Target applications include cinema, television, = games, web, video communication...<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>Technicolor Research & = innovation in Rennes, France, offers a Post-Doc position in the area of Human = Perception and Video Processing. The position is located in the Video Processing & Perception Lab and in the project entitled “Human = perception”. The core technology consists in simulating the human visual attention, by = detecting the regions of interest (RoI) in images/videos. A biologically plausible architecture based on signal processing tools has been implemented and = is currently restricted to bottom-up aspects of perception. The long-term = ambition is to extend the existing model towards top-down or more cognitive = concepts of attention with some tools, such as object modeling, specific detectors = (face, text…) or even scene categorization... <o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>The context of this Post-doc is = a multi-modal visual attention model. More specifically, the main = objective of this research work is the use of audio saliency and/or audio cues in = order to extend and improve the existing Technicolor visual attention model = [1,2].<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>Goals/tasks of this research = work include (other tasks to be discussed):<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>- A complete state-of-the-art in = the field. <o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>- A concrete implementation of a = solution within the existing model (C programming): development of the detection = of audio cues as well as their fusion with other independent visual = cues. <o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>- The definition/set-up of a = complete test environment in order to conduct experiments of visual attention with = human participants. It is foreseen that experiments will use an eye-tracking apparatus in scenarios where visual stimuli are presented together with = audio stimuli.<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>The successful candidate must = have a PhD (or soon), and specific knowledge in Computer Science, Audio Processing = and/or Image Processing. Ideally, additional knowledge in Human Perception and = a background in subjective experiments setup/protocol would be valuable. = Since software development is expected in this research work, good programming = skills (C/C++ on Windows/Linux) are required.<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>Applicants should submit a = curriculum vitae, recent list of publications, a statement of research interests = and examples of research work achievements.<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>Resumes may be submitted = electronically in either Word (.doc), Rich Text (.rtf) or Portable Document Format (PDF), = and should be sent to <a = href=3D"mailto:Philippe.guillotel@xxxxxxxx">Philippe.guillotel@xxxxxxxx= hnicolor.com</a> <o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US>[1] O. Le Meur, P. Le Callet, D. = Barba, and D. Thoreau, “A coherent computational approach to model the = bottom-up visual attention,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 802–817, = 2006.<o:p></o:p></span></p> <p class=3DMsoNormal><a name=3D"_Ref257218351"><span lang=3DEN-US>[2] Le = Meur, O., Le Callet, P., Barba, D. Predicting visual fixations on video based on = low-level visual features, Vision Research, vol. 47, no. 19, pp. 2483–2498, = 2007.</span></a><span lang=3DEN-US><o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><b><span lang=3DEN-US = style=3D'font-size:10.0pt;font-family: "Trebuchet MS","sans-serif";color:black'>Dr. Quan = HUYNH-THU</span></b><span lang=3DEN-US style=3D'font-size:9.0pt;font-family:"Trebuchet = MS","sans-serif"; color:black'><br> Senior Scientist, Video Processing & Perception = Group<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US = style=3D'font-size:9.0pt;font-family:"Trebuchet MS","sans-serif"; color:black'>Technicolor Research & Innovation<o:p></o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US = style=3D'font-size:9.0pt;font-family:"Trebuchet MS","sans-serif"; color:black'><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US = style=3D'font-size:9.0pt;font-family:"Trebuchet MS","sans-serif"; color:black'>email: quan.huynh-thu@xxxxxxxx<o:p></o:p></span></p> <p class=3DMsoNormal><span = style=3D'font-size:9.0pt;font-family:"Trebuchet MS","sans-serif"; color:black'>tel: +33 (0)2 99 27 90 45<o:p></o:p></span></p> <p class=3DMsoNormal><span = style=3D'font-size:9.0pt;font-family:"Trebuchet MS","sans-serif"; color:black'>fax: +33 (0)2 99 27 30 15<br> <img border=3D0 width=3D114 height=3D69 id=3D"Picture_x0020_2" src=3D"cid:image001.jpg@xxxxxxxx" alt=3D"cid:image004.jpg@xxxxxxxx"><o:p></o:p></span></p> <table class=3DMsoNormalTable border=3D0 cellspacing=3D0 cellpadding=3D0 = width=3D441 style=3D'width:330.75pt'> <tr> <td width=3D37 style=3D'width:27.75pt;padding:0cm 0cm 0cm 0cm'> <p class=3DMsoNormal><img border=3D0 width=3D28 height=3D34 = id=3D"Picture_x0020_1" src=3D"cid:image002.jpg@xxxxxxxx" alt=3D"cid:image005.jpg@xxxxxxxx"><span = style=3D'font-size:12.0pt'><o:p></o:p></span></p> </td> <td width=3D404 style=3D'width:303.0pt;padding:0cm 0cm 0cm 0cm'> <p class=3DMsoNormal><i><span lang=3DEN-US = style=3D'font-size:9.0pt;font-family: "Arial","sans-serif";color:#9D9FA2'>Help preserve the color of our = world – Think before you print.</span></i><span lang=3DEN-US = style=3D'font-size: 12.0pt'><o:p></o:p></span></p> </td> </tr> </table> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> <p class=3DMsoNormal><span lang=3DEN-US><o:p> </o:p></span></p> </div> </body> </html> ------_=_NextPart_002_01CB4F51.E0BE612A-- ------_=_NextPart_001_01CB4F51.E0BE612A Content-Type: image/jpeg; name="image001.jpg" Content-Transfer-Encoding: base64 Content-ID: <image001.jpg@xxxxxxxx> Content-Description: image001.jpg Content-Location: image001.jpg /9j/4AAQSkZJRgABAgEASABIAAD/4QpVRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUA AAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAAcgEyAAIAAAAUAAAAjodp AAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENTMyBXaW5kb3dz ADIwMTA6MDE6MjcgMTg6MTU6MDEAAAAAA6ABAAMAAAAB//8AAKACAAQAAAABAAAAcqADAAQAAAAB AAAARQAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEA AgAAAgEABAAAAAEAAAEuAgIABAAAAAEAAAkfAAAAAAAAAEgAAAABAAAASAAAAAH/2P/gABBKRklG AAECAABIAEgAAP/tAAxBZG9iZV9DTQAC/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBEL CgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsN Dg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAwM/8AAEQgARQByAwEiAAIRAQMRAf/dAAQACP/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYH CAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQh EjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXi ZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIE BAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKy gwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//aAAwDAQACEQMRAD8A9VSSTeSSl0kkklKSVHK6l9n6nhYHp7vtotPqbo2+k0P+hHv3 z+8rySlJJIOPmYuUbRj2NtNDzVbtM7Xt+kxySkySSSSlJKj0vqf7QdmD0/S+x5L8b6W7ds2/pPot 27t30VeSUpJJJJSkkkklP//Q9VXNVM6q/wCt+X6eRWyplVJewsLpqLn/AKNvv9ln0veulWbZ0m0d YHVMfJNO9ja8mgsDhY1hLmw8+6p3uSU8/b9bcuwX5mPk0Vspe4U4Dqnufaxh2+7Ib7a7bY/R7Vqu 6l1Pqea7D6W+vEZRVVbffcw2O3XD1KqWVbq2/Q/nHuU29BzcZ9jem9SfiYtrzYcc1MtDHOO6z0H2 fzbXO/NRc3ot1mb+0MDLdhZbmCu5wY2xljW/Q9Sp/wCez816SnN6mzqw6t0RnqUO6htygbdrhVG1 vv8AS3b93p/mb/5xNkda6xgY/V6Miyq7J6fXVdTkNZtDhaY22U7nfQWqzo9pycDKyMt2Rdgi4F7m tb6nrDbrs2tr9P8ANQs/6uszX9Qebyz9o1V0kBs7PTM7hr7tySmv9u67h52B9usoto6g81OpqYWm pxabGbLXOPq/R9+5iE3rmVTTmiqqp2S/qbsHFEbGlzg3bZkbfc/a3fvctfM6Y3KtwbDYWfYbRaBE 7oaa9v8AJ+kqrvq3jvx8umy185WUc2u1ntfVYduw1n3fze1JTDIyusdHwcrP6jfTmVVV7mMrrNTv UJDGMnfY30vchW5nXumHGyuo20ZGPkWspvprrLDUbTtY6qze/wBZrHfT3q0zo2XdTfj9Vz3Z2PfW avS9NlQEn+d3Vy71UOv6v5L7McZ/UH5mNhuFlNBY1kuZ/NPyLGe6700lOXh9QyMJnUWYjWuyszrF mPQXzsa5wa42WbfdtYxq0W53Vun9QpweoW15TMyux1F9bPTLbKm+o+uyvfY1zNn0HqZ+rVLqcqs3 vFl+Wc6m5oAdVaY27Ppb9sImP0S77UM3qGY7NyK63VUHY2tlYeIse2tm7dY/9/ckph9W8vrGfh1Z +c+n0bqx6dVTSHTP85Y9x/O/0bVsqp0rAHTenUYLXmwUN2h5EE6z9HVW0lKSSSSU/wD/0e46x9ZK cHJdhlj9zQC57Y7jdpJWLf8AXKoPLALxHJBH/kkvrPiZVvWLX102PaWshzWkj6I7gLlctj68l7LG ljgdWuEEaeBWtg5bDLHA1cjEE6uBn57mRzGWN1CMpRh6ekZaOvf9f6hYWD7SA0xoR/5NRH18r/ey fvH/AJNY7PqV9ZMwDKx8TfTd763epWJaeDDn7lkWYuRVY6p9bg+slrhEwQdruE2WLBtEgkb0Xb+H 8eQE5AfliY6V8z2Y+vdMc5P3j/yakPr9j/8Adn7x/wCTXEqVbH2WNrraXveQ1rWiSSdA1oVDLAAa eL03Lcjy8r4o7V1e6o+vWPbc2sfaJcY1I/8AJrVw/rLXdkNrHq+6eSI0E/vLgsbo/V6L2W3YWRVU wy576ntaB/Kc5q3ujVvt6lUysbnO3QP7Llhc7mzY9Md8RjcR8xMujLzPJcpEEwogRJsSt7SrqbXO 2+/jv/vUruotYA73+Gn+9Uq8PJpdvtrLW8SYRDi25XsqiRrqY0WP/pD4iM0cVETltAwqR+knGy48 VEx1HcFjkdaZWA6bNdND/tWVn/WivFc0l15FkwAeI/tea1j9Xrb/AG3WCsDUFvu/8iuZ+uPQ7cM4 nob8jf6m7aw6R6f7u76W5a/KH4geGWaPDDXiuhL+r6fmcvnZGGOcsfSq+1l/z5rreHA5BjUAkEfi 9dd9Xut19bwXZdbHV7LDU4OjUgMfuEF3+kXkeTTdU4C1jqyRIDgR/wBUvRf8W3/IV3/hp/8A1FK0 8ciTq0+T5nLkyCMzpROz1aSSSmdJ/9L1Vcx1T6k19Rz7s05bqzcQdgYDEAN+lvb+6unST8eWeMkw PCSKY8uHHlAjkjxAG961/wAFrdOwxg4NOIHbxQwMDyImO8KwQE6SaSSSTudV4AAAGwFB43/xsulF +85V51kj2a/9FbNP1Q+rlFzL6sJrbKnB7Hbn6OadzXavWykkZE7lnPM5zp7kh5Hh/wCiiyMerJpf Rc3dXYIc2SJHyVPF6B0nEvbkY9Gy1k7XbnGJG385y0Ukw44SIkYgyGxI1CyOXJGJjGcoxl80QajJ YtDhDgCPApmsY0y1oB8hCkkiYxJ4iBfetVlqSSSRU5fVfq50nq9rLs6t1j627GkPc3Sd35hR+ldI wek47sbBYa6nPNhBcXe4hreX/wAliupIULtaMcBLjERxH9KvUpJJJFc//9P1VJfKqSSn6qSXyqkk p+qkl8qpJKfqpJfKqSSn6qSXyqkkp+qkl8qpJKfqpJfKqSSn6qSXyqkkp//Z/+0PYFBob3Rvc2hv cCAzLjAAOEJJTQQEAAAAAAAHHAIAAAIIewA4QklNBCUAAAAAABAKlvaq8aEwpHlE1oe929t1OEJJ TQQvAAAAAABKQwQBAEgAAABIAAAAAAAAAAAAAADQAgAAQAIAAAAAAAAAAAAAGAMAAGQCAAAAAcAD AACwBAAAAQAPJwEAbGx1bgAAAAAAAAAAAAA4QklNA+0AAAAAABAASAAAAAEAAgBIAAAAAQACOEJJ TQQmAAAAAAAOAAAAAAAAAAAAAD+AAAA4QklNBA0AAAAAAAQAAAAeOEJJTQQZAAAAAAAEAAAAHjhC SU0D8wAAAAAACQAAAAAAAAAAAQA4QklNBAoAAAAAAAEAADhCSU0nEAAAAAAACgABAAAAAAAAAAI4 QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEAoZmaAAYAAAAAAAEAMgAAAAEAWgAA AAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAAAHAAAP////////////////////// //////8D6AAAAAD/////////////////////////////A+gAAAAA//////////////////////// /////wPoAAAAAP////////////////////////////8D6AAAOEJJTQQIAAAAAAAQAAAAAQAAAkAA AAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAAz0AAAAGAAAAAAAAAAAAAABFAAAAcgAA AAQAbABvAGcAbwAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAcgAAAEUAAAAAAAAA AAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5k c09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAA AABCdG9tbG9uZwAAAEUAAAAAUmdodGxvbmcAAAByAAAABnNsaWNlc1ZsTHMAAAABT2JqYwAAAAEA AAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAAB2dyb3VwSURsb25nAAAAAAAAAAZv cmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2VuZXJhdGVkAAAAAFR5cGVlbnVtAAAA CkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRv cCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAABFAAAAAFJnaHRsb25nAAAA cgAAAAN1cmxURVhUAAAAAQAAAAAAAG51bGxURVhUAAAAAQAAAAAAAE1zZ2VURVhUAAAAAQAAAAAA BmFsdFRhZ1RFWFQAAAABAAAAAAAOY2VsbFRleHRJc0hUTUxib29sAQAAAAhjZWxsVGV4dFRFWFQA AAABAAAAAAAJaG9yekFsaWduZW51bQAAAA9FU2xpY2VIb3J6QWxpZ24AAAAHZGVmYXVsdAAAAAl2 ZXJ0QWxpZ25lbnVtAAAAD0VTbGljZVZlcnRBbGlnbgAAAAdkZWZhdWx0AAAAC2JnQ29sb3JUeXBl ZW51bQAAABFFU2xpY2VCR0NvbG9yVHlwZQAAAABOb25lAAAACXRvcE91dHNldGxvbmcAAAAAAAAA CmxlZnRPdXRzZXRsb25nAAAAAAAAAAxib3R0b21PdXRzZXRsb25nAAAAAAAAAAtyaWdodE91dHNl dGxvbmcAAAAAADhCSU0EKAAAAAAADAAAAAE/8AAAAAAAADhCSU0EEQAAAAAAAQEAOEJJTQQUAAAA AAAEAAAAAThCSU0EDAAAAAAJOwAAAAEAAAByAAAARQAAAVgAAFy4AAAJHwAYAAH/2P/gABBKRklG AAECAABIAEgAAP/tAAxBZG9iZV9DTQAC/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBEL CgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsN Dg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAwM/8AAEQgARQByAwEiAAIRAQMRAf/dAAQACP/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYH CAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQh EjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXi ZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIE BAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKy gwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//aAAwDAQACEQMRAD8A9VSSTeSSl0kkklKSVHK6l9n6nhYHp7vtotPqbo2+k0P+hHv3 z+8rySlJJIOPmYuUbRj2NtNDzVbtM7Xt+kxySkySSSSlJKj0vqf7QdmD0/S+x5L8b6W7ds2/pPot 27t30VeSUpJJJJSkkkklP//Q9VXNVM6q/wCt+X6eRWyplVJewsLpqLn/AKNvv9ln0veulWbZ0m0d YHVMfJNO9ja8mgsDhY1hLmw8+6p3uSU8/b9bcuwX5mPk0Vspe4U4Dqnufaxh2+7Ib7a7bY/R7Vqu 6l1Pqea7D6W+vEZRVVbffcw2O3XD1KqWVbq2/Q/nHuU29BzcZ9jem9SfiYtrzYcc1MtDHOO6z0H2 fzbXO/NRc3ot1mb+0MDLdhZbmCu5wY2xljW/Q9Sp/wCez816SnN6mzqw6t0RnqUO6htygbdrhVG1 vv8AS3b93p/mb/5xNkda6xgY/V6Miyq7J6fXVdTkNZtDhaY22U7nfQWqzo9pycDKyMt2Rdgi4F7m tb6nrDbrs2tr9P8ANQs/6uszX9Qebyz9o1V0kBs7PTM7hr7tySmv9u67h52B9usoto6g81OpqYWm pxabGbLXOPq/R9+5iE3rmVTTmiqqp2S/qbsHFEbGlzg3bZkbfc/a3fvctfM6Y3KtwbDYWfYbRaBE 7oaa9v8AJ+kqrvq3jvx8umy185WUc2u1ntfVYduw1n3fze1JTDIyusdHwcrP6jfTmVVV7mMrrNTv UJDGMnfY30vchW5nXumHGyuo20ZGPkWspvprrLDUbTtY6qze/wBZrHfT3q0zo2XdTfj9Vz3Z2PfW avS9NlQEn+d3Vy71UOv6v5L7McZ/UH5mNhuFlNBY1kuZ/NPyLGe6700lOXh9QyMJnUWYjWuyszrF mPQXzsa5wa42WbfdtYxq0W53Vun9QpweoW15TMyux1F9bPTLbKm+o+uyvfY1zNn0HqZ+rVLqcqs3 vFl+Wc6m5oAdVaY27Ppb9sImP0S77UM3qGY7NyK63VUHY2tlYeIse2tm7dY/9/ckph9W8vrGfh1Z +c+n0bqx6dVTSHTP85Y9x/O/0bVsqp0rAHTenUYLXmwUN2h5EE6z9HVW0lKSSSSU/wD/0e46x9ZK cHJdhlj9zQC57Y7jdpJWLf8AXKoPLALxHJBH/kkvrPiZVvWLX102PaWshzWkj6I7gLlctj68l7LG ljgdWuEEaeBWtg5bDLHA1cjEE6uBn57mRzGWN1CMpRh6ekZaOvf9f6hYWD7SA0xoR/5NRH18r/ey fvH/AJNY7PqV9ZMwDKx8TfTd763epWJaeDDn7lkWYuRVY6p9bg+slrhEwQdruE2WLBtEgkb0Xb+H 8eQE5AfliY6V8z2Y+vdMc5P3j/yakPr9j/8Adn7x/wCTXEqVbH2WNrraXveQ1rWiSSdA1oVDLAAa eL03Lcjy8r4o7V1e6o+vWPbc2sfaJcY1I/8AJrVw/rLXdkNrHq+6eSI0E/vLgsbo/V6L2W3YWRVU wy576ntaB/Kc5q3ujVvt6lUysbnO3QP7Llhc7mzY9Md8RjcR8xMujLzPJcpEEwogRJsSt7SrqbXO 2+/jv/vUruotYA73+Gn+9Uq8PJpdvtrLW8SYRDi25XsqiRrqY0WP/pD4iM0cVETltAwqR+knGy48 VEx1HcFjkdaZWA6bNdND/tWVn/WivFc0l15FkwAeI/tea1j9Xrb/AG3WCsDUFvu/8iuZ+uPQ7cM4 nob8jf6m7aw6R6f7u76W5a/KH4geGWaPDDXiuhL+r6fmcvnZGGOcsfSq+1l/z5rreHA5BjUAkEfi 9dd9Xut19bwXZdbHV7LDU4OjUgMfuEF3+kXkeTTdU4C1jqyRIDgR/wBUvRf8W3/IV3/hp/8A1FK0 8ciTq0+T5nLkyCMzpROz1aSSSmdJ/9L1Vcx1T6k19Rz7s05bqzcQdgYDEAN+lvb+6unST8eWeMkw PCSKY8uHHlAjkjxAG961/wAFrdOwxg4NOIHbxQwMDyImO8KwQE6SaSSSTudV4AAAGwFB43/xsulF +85V51kj2a/9FbNP1Q+rlFzL6sJrbKnB7Hbn6OadzXavWykkZE7lnPM5zp7kh5Hh/wCiiyMerJpf Rc3dXYIc2SJHyVPF6B0nEvbkY9Gy1k7XbnGJG385y0Ukw44SIkYgyGxI1CyOXJGJjGcoxl80QajJ YtDhDgCPApmsY0y1oB8hCkkiYxJ4iBfetVlqSSSRU5fVfq50nq9rLs6t1j627GkPc3Sd35hR+ldI wek47sbBYa6nPNhBcXe4hreX/wAliupIULtaMcBLjERxH9KvUpJJJFc//9P1VJfKqSSn6qSXyqkk p+qkl8qpJKfqpJfKqSSn6qSXyqkkp+qkl8qpJKfqpJfKqSSn6qSXyqkkp//ZADhCSU0EIQAAAAAA VQAAAAEBAAAADwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8AcAAAABMAQQBkAG8AYgBlACAA UABoAG8AdABvAHMAaABvAHAAIABDAFMAMwAAAAEAOEJJTQQGAAAAAAAHAAgAAQABAQD/4Q6WaHR0 cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBN cENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEv IiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA0LjEtYzAzNiA0Ni4yNzY3MjAsIE1vbiBGZWIgMTkg MjAwNyAyMjo0MDowOCAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3Lncz Lm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJv dXQ9IiIgeG1sbnM6eGFwPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczpkYz0i aHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iIHhtbG5zOnBob3Rvc2hvcD0iaHR0cDov L25zLmFkb2JlLmNvbS9waG90b3Nob3AvMS4wLyIgeG1sbnM6eGFwTU09Imh0dHA6Ly9ucy5hZG9i ZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8x LjAvIiB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgeGFwOkNyZWF0 ZURhdGU9IjIwMTAtMDEtMjdUMTc6NTc6MjkrMDE6MDAiIHhhcDpNb2RpZnlEYXRlPSIyMDEwLTAx LTI3VDE4OjE1OjAxKzAxOjAwIiB4YXA6TWV0YWRhdGFEYXRlPSIyMDEwLTAxLTI3VDE4OjE1OjAx KzAxOjAwIiB4YXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDUzMgV2luZG93cyIgZGM6 Zm9ybWF0PSJpbWFnZS9qcGVnIiBwaG90b3Nob3A6Q29sb3JNb2RlPSIzIiBwaG90b3Nob3A6SGlz dG9yeT0iIiB4YXBNTTpJbnN0YW5jZUlEPSJ1dWlkOjNDMTQzMEJGNjUwQkRGMTFCRTlBOTAzQjI4 NDIyREQ3IiB0aWZmOk9yaWVudGF0aW9uPSIxIiB0aWZmOlhSZXNvbHV0aW9uPSI3MjAwMDAvMTAw MDAiIHRpZmY6WVJlc29sdXRpb249IjcyMDAwMC8xMDAwMCIgdGlmZjpSZXNvbHV0aW9uVW5pdD0i MiIgdGlmZjpOYXRpdmVEaWdlc3Q9IjI1NiwyNTcsMjU4LDI1OSwyNjIsMjc0LDI3NywyODQsNTMw LDUzMSwyODIsMjgzLDI5NiwzMDEsMzE4LDMxOSw1MjksNTMyLDMwNiwyNzAsMjcxLDI3MiwzMDUs MzE1LDMzNDMyOzhGQzhGRDYyQ0RGRUZEMzI1MzE3N0QzQjUxOUI2RTdGIiBleGlmOlBpeGVsWERp bWVuc2lvbj0iMTE0IiBleGlmOlBpeGVsWURpbWVuc2lvbj0iNjkiIGV4aWY6Q29sb3JTcGFjZT0i LTEiIGV4aWY6TmF0aXZlRGlnZXN0PSIzNjg2NCw0MDk2MCw0MDk2MSwzNzEyMSwzNzEyMiw0MDk2 Miw0MDk2MywzNzUxMCw0MDk2NCwzNjg2NywzNjg2OCwzMzQzNCwzMzQzNywzNDg1MCwzNDg1Miwz NDg1NSwzNDg1NiwzNzM3NywzNzM3OCwzNzM3OSwzNzM4MCwzNzM4MSwzNzM4MiwzNzM4MywzNzM4 NCwzNzM4NSwzNzM4NiwzNzM5Niw0MTQ4Myw0MTQ4NCw0MTQ4Niw0MTQ4Nyw0MTQ4OCw0MTQ5Miw0 MTQ5Myw0MTQ5NSw0MTcyOCw0MTcyOSw0MTczMCw0MTk4NSw0MTk4Niw0MTk4Nyw0MTk4OCw0MTk4 OSw0MTk5MCw0MTk5MSw0MTk5Miw0MTk5Myw0MTk5NCw0MTk5NSw0MTk5Niw0MjAxNiwwLDIsNCw1 LDYsNyw4LDksMTAsMTEsMTIsMTMsMTQsMTUsMTYsMTcsMTgsMjAsMjIsMjMsMjQsMjUsMjYsMjcs MjgsMzA7NjkzMThDREFCMzdCRjU5MDNFN0MwQTY1MEM4NTgyQUQiLz4gPC9yZGY6UkRGPiA8L3g6 eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+/+4ADkFkb2JlAGRAAAAAAf/bAIQAAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEB AQEBAQEBAgIBAgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD AwMD/8AAEQgARQByAwERAAIRAQMRAf/dAAQAD//EAKkAAAICAwADAQAAAAAAAAAAAAAIBwoFBgkB AgQDAQEAAgMAAwEAAAAAAAAAAAAAAQgGBwkCBAUDEAAABgICAQMDAgMGBwAAAAABAgMEBQYHCAAR EiETCUEUFTEWUSIyYXFSIyUXNrcYOHgKGhEAAQMDAwIDBwEFBAsAAAAAAQACAxEEBSESBjEHQRMI UWFxgSIyFELwwSMVCZGh0eFSslODJDR0tDV1N//aAAwDAQACEQMRAD8Av8cIjhEcIjhEcIjhEcIj hEcIjhEcIjhEcIjhEcIv/9C/xwi9PNMFAS8ye6YgqAn5B7gplMUpjgTvyEhTHABH9AEQDhF78Ige ESv5M2QLjvZjWXXQaaeYNsbHZokC3ALAVgSnf7P1SMtBkTQAwzwZ/wDcP5L2PIHjL7Xw8+lu/EHh VTTSqZ/hQvPCKOMe5cxnlZW7oY4u0Bclsb3eZxveiQT0rwaveq+CAzVYlfEABGTjfuSAqUPIoGEQ 8hEDdEUj8IjhEqusGzZNkX+xzIlKPTf+n7ZPIevJlTWItg/dp6C3g1zW4pCwkN+CLK/mfEGAi7FH 2u/uD+XRZIoaKSKGiarkKEcIjhEcIv/Rv8cIuJNZi9q535dthU6zmHHFeqNaxXrxJT9bkcfT1kVk 8Ou7TbF06hAvHluboVm5vPtnqryURSM1UXdpCDXpD+af0n4ry/T80sNo+WjLlkaZOzZjjN2CarA0 G6W+Nx1qPY8NZQs95zHTKHOO4hw6nswxBk4ym3i+JxrhWIZsmblm1Mo2TdKCPujyS0gVKFtBqn7k NkdltqMzzOF9S7DQ8DwONMRYcyllbKGVKC/yRaiT+da2e5ULHVXx/wDn6lGIEZ1dA60vIPHBzprn KikkQxDGPAprVRprVQJsxF7ZtdsPi7gwtuEJbZxSC3PjXl8VqltjMSNWK9LriS1pSpCU+4sT6Zja YJVix4SKDZ3Lh4iqg2Hsr9J+P+KeBXzZD3U2916oPyI4+yLa8Y5Fy3qhjfDuVMY5cgserVGIskHl iQMzWi7bj09imGTZ/ALMlU0jt3gkVIfyP5CUO4QCpAUy/wC9+8+Fs4aimz5ccD3LHW2V4eY3mMaY 4oNhgXWH551R5O3V53XchTFpkn98bkPEmSfqvWDJM4eYooJgdMU5p1U0H1KPGG8GTaNTtn0ahQcX yeW7D8oll0swFHJwYUupPrJYmdecQtwy69gzDJWFzExiL95JPiCm8kAbpIAYgiByqe/wSnT4Kdr7 lDb/AEnwnnfYPZfK2INhaXR8cFmaxWqNiaYxLZW+TZWwQ9frteUkv3hbIx1Q3D+YIku6VQ/IkAwK ddEMU8KDSunRaXZcyb4aqrYPyxsresH5UxblzJ2OcVZQxxj/ABrM0acwfMZXkiQ1fmqPcndxnz5E g65POkW0iSRaN3ThEfNAoCImJPh71NAR70qmG9gr/giL3NgMQQtbmcz7C/Mpl3AOLnF0M+/ZFZsN ohK5LSN0t7eMUQlJGErNfg3K/wBo3UTXcrimQBEvkAy79PwUkV/sToxmbtsdc9g8dYC2QvONc4wm wuPMvzuJco0jG7nFs1VMjYcqKd2sVPttR/dlrjJSqv64cyrCQSXSc++kKaxOjAIQAToF4+BWy/G5 lbb3YvEdF2I2Cs2HUqLkXHDRWoUTHVWmmljCabTSjV1dbdZJOROxRcS6LFcpYhg2+2apqJD7x1Cn 7lwANApNASF0u54rxRwi/9K/wPCJKZ3U+1JbhNdscbZwkaCSyUupY/zRi93Qq9b4TJ1ZpMnLycCW OsMg9YzNElUvzKiJ3DUHIHIAD4AIm7mppTwU10oofY6H5rxbOXOP1Z3VuGBMOXm4z16c4jf4cxxl lpSrBbZNabtYYvsluOg9qMNNSzpdwDFZB+2aqrHOkUDCIjHXqo+KkDM2mdwsuZR2N152Ismtua5u mw9AyVKtKLV8mUPKtcryq6lcWt+P7MqwafuWuC8WTYybV0gui3P7IgZPsBKQfAjRZOG0+s6uTNTM u5Iz/acp37WFhnZq/n5yl1OCcZOXzhFoxSyr9pVwiomqM6c2QImwQatlxUbpkIqcTAZQxD8Fomev jxhs6TO4My7ylLVw+3GJsSYqkW7arM5ItHb4qk3kk3mWKisyzGcVmjPBIoioVsCAB2Bz+gBIJHRQ DRTzmLWNhl2z6t2Vzb3sGfWPKDTJjBmhDoPi3BdpTpioFiHiyr5qMOkolLiuKxCriAk8PD18ghPa oGe/G9j+dx/sVRrHkK4KO827XT239Qu9ZRa1e44Ryk8/AK1l/SZFNaSSdu6o5gx8XK6ZBcoOlUjJ k7A4FJPT4LNQ+muWbxUsn43262wsezmMsk44e43PSEsR46xEyjEnbxk8Ru6knU05GXkb/HqMSmbu gWQZIqf5gNPIC+JQtOr2gOSZux4fR2L29vewmJ8AWqBvOMcYSWO6bR1pG304h0qLP5culeXcSuTX dQAwKoFOjHpOXRCruSKn8wORfq8+NSmyNLzlXneVLiytGTtwp3dbHOR65GRkNacH5afEiywatcKs tKR9haQqbBVBYHaRCPmjtVMyaZvBQpK0W2Y+0nuZ8poZx2T2MnNi8o1ag27HOJ3QY5quLKXi+Ivb IkdcJ+IptaeyZZO62Vgim3dyK7wCi18kU0SE8PbJXSngmD1WwK01f16xXgFhZXNxZ4vrYVxvZnkY lDOpggSD1/8AdLRaDx+kyN5PRL4FWUDovffrwpJqapgeFCOEX//TtQ7e/I9U8B5KmsLLV26ll4hh DPZKfg0IZUjhKcimss3bxqjyXaLthSbuwKooJCn8wECCUA7NZbtX6fsrzjjtly6O/s/xZXyNZFIZ BtMcjmEvpG4GpaS0VpTr7BRD1BetTinaHnGU7aXuEypyVtDC+SeBsBa4TxNmaIy+djhRrwHEtrur tNNTzIu/zJ1RtKuoNqhnFoRiokRwu2exBVnKpkiKgIK/ukp0kSlUD0DowiHYj10HNy2/pmyTKOlf iHEnwa+nwH8Kn7aeK1XjPWlxvI2VvkIYM+2GQEgOdHXQka0uT7PA+OlNUjV5+firN7DIwiKuyzJK EfuY4ws5WITFy4bqeyouZQt2IYUxMXohPQAL6iHfPVl9Pl4172GPFVB8Gu8P90rFcV78YOXEWWTk jy0st1C2QbnMO1rhuDaGYioBFXDx9ywqfzxV72yj+W2g7MAKD5TkeIh5lDoP+Nx6EO/TmB3faWUX ErBDjw1ji3Rp8DQ/o9y6FcY4HPc4LEX4mheLuCKar6l1JWNe1pG00oHBtATqKrb0fnbqaaSZBf7O nECgBjDMxpjCI+oj63b6j+n9vNPXnC7x0tzMPxQPqIbrQBoNB9n7VVmsf6ZcvI20txNiN0hY3c4P r9RFSaxHQE+HsCzqPz2UADJkE2zwlESE7NIw/Yh/Ewjee+zc0xlsPmLfHZHIfmMBZDJJQOdpoTQD b4Kx+O9BXJbq+sMe2fjdZJWMq4S61NNaWx6/NSPR/nOoNptsFX2xNkCrSr4rVMzyShRbAIkUOHvA S6Kn8f5PoUR5V3k/Lczx3juVzdzl7t0FtCXkMkduIqPtq5orr4kaLZfIf6dfJsLhcnlJncUdFBEX HayXdQeytoNfn80/mHfkrr9zyBDVhIcuqqSyEomT8m7YnZpmax7h+JzgWwLGKIA1ECiBRHsfpyrf MvVzY8S45f8AIb24zzra3LNwjkaXEPe2MAbp2t6vFfqpQHVVy5l6Tclh+PXmVLMGGxFhOxjtx3Pa yg/gjT6q9fBPzVNnI2VkzMAC3mMo2UVKZyqgYhRQ8RHr/UTiHkB+v7/ryvWT/qW8RsLb8iSLlxYH AGj4KmtdP+c9yr1neyd3Z2f5J/l4DXgUAcCQdP8AZgaU0WVuGw0fCNmr457aBVVxaim2XQARH21F SnEDSBS9h4CAj3688ML/AFPuE38k1uLPl9Q3dVz4NBWlB/xnvC1nnO3V3YRxT7rWhdSgB9hd/ojo l9vu5kPWUmUgdbIwpvVjtRRau2/RVE0/d9wCmmSFIAk9PT6hzaPFP6hnEuQS3NpDa8nDombyXmE6 E0ppck9aLWXJ8RLhGW90+Ru2Vxbtb7QK11oCP3pAc9fKJXcRyEIq5ks8OGdqJKLNWjCWamFipGGZ FdEE7i0oD7KoyBBTAOxL0ID6AHLb9m/Ufje7Vtmm4yDJRS47yQ902wbxMJC0gMldqPLIdWg6U1qq jd4+61h2qu8NJfTZKWDIiZzGxOadhhMYcDvkZ9J8xu0Cp61PRK+Pzi16rzDGQaO9hnCiChXaCEi8 g5NmfwMJTIPGT+2rNHqJ+/ESqEEBAfoPqG+bPk88n8Zk8xLSNCSRp7iT+3iteYz1acZuG+cMdlhI w618kg/IzkUp4KxL8em7ld32wXJ5irtVm6kWu3+YxrLspsrAhn0zCV2qWNxKxyTCQkgQjHTS2oEK mqqKpFU1A9S+JjbKw2TOVtDcGLa4O2n3kAGvu69FZ3tj3Fxvc3j1xnsZZzQQw3TrdzZdgcXsZHIX AMc4BpEoAqQag6UoS9fPrLYq/9TrP8neJsp2zcK+TNXxpf7LDuK/Q00JaAptimI1Y7eoRCC6aT+O jnDVVRBYhiHAp+ymASj686SenLlHGsZ2nwdpkuRWNvdtuLklks8THUM7yCWueHCo6VqCFwe9dPb/ AJ7n/Ufy3J4HhWXvsc+0sA2W3s7maNxbZxNcBJHG9pIcCCAdCCDqFwHyxCzNcyNaYWwxEnBTLB82 TfREyxdRcmxUPHs1yJu2D1JB22MdFUpwA5Q7KYB66EOWZsbu0v7SG8sbqOe0kFWPjcHscAaGjm1a akEVBp1BWi8JjMlh8TZY3L4+e0yULSHxTRvjkYS4kB8b2tc0kEEAtBoQei1yJ+FT5I83M0cvY1wA hYMf5EUVtlQnFMoYnijSkBLrmcR74Y6Wu7CUZiuiIG9pdBNUv1KH00TyLvZ22wObyuFynIfLyNvM 5kjPIndR4P1N3CItPyJHvXTLt32s5zmeBcRyuNwwksZ8fC5jvNhFQWCh2ueCPmFzqn8X5DqE9N1S fp0+znatLyNem2ZI5y7TZy8G9WjJNqR4zTXaOSt3rU5QUSOZIwB2Uwl6EcVdkrG9e+6trproJnF7 DWlWvq4HwOoINCAu4fEwbTi3GLW4c1tzHj7VjhUGjmwRgjSo0II0NK1XzD6eRRAQMACAgIdddD6h 1+odD9B9eV+uPtuCOlHfDoV0axWt1iaGo82L4fc1ZCBhZmyTsNXa7FSM9Pz0rHw8JCQ7JzJS0xLS TtJnHRcXHM0lnb6Qfu1iJIopEMoqoYClATCAc0Dn2PkwOYjjYXSG1koAKknYemhV+7DIWGJydrlM rfQ22LtphLNNK9scUUUZ3ySSSPIYxjWglznENDQSTRPJjvT3bSg3at3G9aw7A02owEmm9nbPacO5 CgK9DM/E6P3crMStfax7BsCypSidVQhezAH6+nKKd28Tk4u2nMJJcdM1gs3VcWPAA3N61H+Syzln fTspybjmZwXHu73GL7N3UJZFb2+UspppXddscUc7nvdQE7WtJoDpous+ndemLTsZj6Ar7FWSl5Eb MmyYomTBVc6NSnHapSmVOmkAkbtznHyMAdB+vOVvO+D8t7k8VyXDOD4aXI8nvDH5FvGWB0nlSslf tL3MYNsbHvO5w0aaVNAqWd58tjsH225Hlctctgx8Qg3vcDtFbiNorQV+4gaA9ei7zQOHcl0qRLOW mpSEPEkQXanfOFmCiZXDgABBMSt3a6vaglEAHrrrlIu9Xph789quDz8t7g9uLzF8dZdQxOmkfbua JJS4RtpHM9xLqECjae2i5/ZHuHwzkdscZg89Fc35cHBjWvB2t1caua0aVHv93ittXxfZcr+EFVjx ab5gJpZYZV0ozRFqmANTFTOi3dHOr7zkvQdB6d+v8cX9LHYHnPqJ53muGdv57BmYtsW+7f8AlzOh Z5Mc0ELtrmRSkv3Ts02gUqa6LU3cDJW2KxNrcXYeYjcBv0iuux/XUexfG5+PS2XwhGN1uUZVWbAx nbN1ANjWVd25UAETILt3Z4MrdIqQibzA5xEQAPEOxHnWHsl/TF7m4zMZuTuby7GY7HvtmiF1iX3k j5PMqWvZI21EbduocHPNaDaNSq58uy1jn7WzgtzI10chcSRTQintOv7lw/8AmG0cs2FltfSUNS7Z cNYkMnDKDCUGSOSBCJVoX2YOTQricKQ8n+TVAgKCkIg3Hx8vXxu3239NMfYL+ctx/Jpsu3KeUSTb CExG38yn2yy7t/neO0jb4105ues/AZO8d27/AJXjrm6c1t8HeVE+QNqbTbuLA6hOtATrt06Kvfky oWynyUazttXsNWeO2BnLZrY4SShHLluDg6QuG6Mk2bKLIAqUS+RQEoGAQ+nNyWEMsMMglicwkjRw IJ0GtKKldjjMljI3xZPHz28jjVolY6MkdKgPAJFfECiuZf8Arc/9ieR//Ka+f8rcLc2zw/8A8ZP/ ANQ7/VYulXpF/wDmmX/91N/21orA3MrVpV//1b+48fNFw12i+FGvbMZ7yPnR7sPNVF1kOVYSitdb 44YzSEULCDioMqCcmrdI1R2BiRYKAYUE/Hz8eh8extRwP1P3nB+I4TikPDYrhllG5olNy5hfue59 dvkv203U6npVUp7mejaw7kc65Dzafn81rJkJWvMQtGyBm2NkQAebhm6uyv2jrTwqus+veI0MCYTx jhhtOrWZvjWoRVTRsDiPJFLy6cWl7RXqsck7fJszKh6+2Cynj/iHle+Ycify7lGd5NJaCB99cvmM YdvDN5rt3EAup7aBWo4DxNnBeGca4fHfG5ZjrRkAlLAwv2Cm4sDnba+zcfiVLqqCahDkEhABQpim HwKP9QCHfQgID0A/X05jgcWkEdVlwNCD7Cq2n/zLarKzf5l7nvPL4qkr+TdsFkcfEbPCnd/dLtFT o1dJYiC4dkMJDFMBR9BAeZ8e4GRMZi/Bh27afq9lPbT+5Wvj9XHNYoo2wcdxrJGNaGuHnEgt+1w/ iEVBAIrUe6mi6W074iPjkoFuq17p+r1VhLZSrFC2yrzKFpyO4WiLDXZJtLwsmi3e3NyyVVj5Jmkq QqqaiYmIHZRDsOYUb26e3Y6U7ae7/BYrl/VZ6gs9isnhcv3KupsZeQSQzMMNoA+KVpZIwltuHAOY 5zSWkGhNCNE+OQaDVMpUyxY+vMZ+aqVqYGjJ2K+7eMfvmRlEljI/dxzho9QAVESj5JqkH06765jv IMDiuUYbIYDN23nYm6ZslZuc3c2oNNzC1w1A+0grS/GOS5nh+exfJ+O3f4+bspRJDJtY/Y8Aiu2R rmO0J0c0j5pa8YaDapYdvEFkfHeMAgbjWzvVYWWG23WTFmeQjncQ6P8AZSthesF/dj36pP8AMSN1 5dh/MACGt+NdiO1nEM3Y8i49xr8fL25cY5PPuH7d7HMd9L5nMNWPcNWnrXqtr8u9SfeXnfHcjxXl HLvycFdhglj/ABrVm8RvbI3644WPFHsafpcOlDpUJu3TJm/SFu+aNnqAmA4oOkEnKImL/SYU1iHL 5F7Hoeu+bFz3G+Pcqx7sTyjA2eSxReHmG6giuIi5n2uMcrXsLm60cW1HgQtI291cWsnnW0745qU3 McWn4VBBX4MoaIjlTLR8VHMVTkFM6rNi1aqHJ5FMKZjoJEOYnkQB6Ef1AP4c+Px3tz294heTZDif BMNi798ZjdLZ2VtbSOj3B3lufDGxzmFzWu2klpc0GlQF+1xkcheMEd3fzSxg1Ae9zgD7QCSFlOZm vTXgf04+WiJFdrPjj1S3StdZumwNLnbRP1GAVq8E4irvaqwg2iFpJeVOio0r8owbuFTPXJze4con 6Hx76AAD5V/iLHJSRyXcZc9opo5w0rXoCFrXm/aTg/cO9sshynHSz3UEXlsLZpIwGlxcQQxzQdSd eqlbVnUvCOmuPZXF2A65JVimzVvkb1IMJSxzdncK2SVh4CBeOyv596/eJInjK0zICJTgmBkxMBfI 5hH2LGwtsfE6G1YWxlxcQTXUgD9wX2+FcG452/xU+F4xaPhx8lw6ZzXPfIfMc1jCdz3OIG2NgoDQ UqOpTK891Zev/9a/xwiOERwiOERwiOERwiOERwiOERwiOERwiOERwi//17/HCI4RHCI4RHCI4RHC I4RHCI4RHCI4RHCI4RHCL//Z ------_=_NextPart_001_01CB4F51.E0BE612A Content-Type: image/jpeg; name="image002.jpg" Content-Transfer-Encoding: base64 Content-ID: <image002.jpg@xxxxxxxx> Content-Description: image002.jpg Content-Location: image002.jpg /9j/4AAQSkZJRgABAgEASABIAAD/4QRpRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUA AAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAcAAAAcgEyAAIAAAAUAAAAjodp AAQAAAABAAAApAAAANAACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENTMyBXaW5kb3dz ADIwMTA6MDE6MjcgMTg6MDI6MjcAAAAAA6ABAAMAAAAB//8AAKACAAQAAAABAAAAHKADAAQAAAAB AAAAIQAAAAAAAAAGAQMAAwAAAAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEA AgAAAgEABAAAAAEAAAEuAgIABAAAAAEAAAMzAAAAAAAAAEgAAAABAAAASAAAAAH/2P/gABBKRklG AAECAABIAEgAAP/tAAxBZG9iZV9DTQAC/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBEL CgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsN Dg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM DAwM/8AAEQgAIQAcAwEiAAIRAQMRAf/dAAQAAv/EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYH CAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQh EjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXi ZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIE BAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKy gwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dX Z3eHl6e3x//aAAwDAQACEQMRAD8A9VSWR1SxvTuoU9WfJpfWcTIjzPq4r/8At31Kf/QhVP8AnTb6 mtDfTniTuj+t9FQZuaw4SI5JcJPhxad0Xv4PRJIGJl0ZlIupMtOhB5B/dcjqX3IcHHxDgri4v0eF L//Q9E+sGN9p6VfXt3iAXN8QD7v+iuKbZZR7LpewfRuAnT/hmj87/hF6LzysrJ+rmHc8vqc6knUt bq35ArO5/k8mWQnjo6cJiTw/4UVso3qHC6P1RuJkh4eHUWaWAGdP3/7C677Vjen6vqs9P9/cI+9Z dP1XwWP3XOdb5QGj5x7lqfZcf0Ps/pt9GI2Roo4crzI5bJhIFSowjxer5oyl6vlVRp//0fVUl8qp JKfqpJfKqSSn/9n/7Ql6UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgh7ADhCSU0EJQAA AAAAEAqW9qrxoTCkeUTWh73b23U4QklNBC8AAAAAAEpvBAEASAAAAEgAAAAAAAAAAAAAANACAABA AgAAAAAAAAAAAAAYAwAAZAIAAAABwAMAALAEAAABAA8nAQBGAGkAbABlAHMAAAAqADhCSU0D7QAA AAAAEABIAAAAAQACAEgAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0EDQAAAAAA BAAAAB44QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhCSU0ECgAAAAAAAQAA OEJJTScQAAAAAAAKAAEAAAAAAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYA AQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAA AAAAcAAA/////////////////////////////wPoAAAAAP////////////////////////////8D 6AAAAAD/////////////////////////////A+gAAAAA/////////////////////////////wPo AAA4QklNBAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAAD QwAAAAYAAAAAAAAAAAAAACEAAAAcAAAABwBmAGUAdQBpAGwAbABlAAAAAQAAAAAAAAAAAAAAAAAA AAAAAAABAAAAAAAAAAAAAAAcAAAAIQAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAA ABAAAAABAAAAAAAAbnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAAAABSY3QxAAAABAAAAABU b3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAAIQAAAABSZ2h0bG9uZwAA ABwAAAAGc2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAAEgAAAAdzbGljZUlEbG9u ZwAAAAAAAAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAMRVNsaWNlT3JpZ2luAAAA DWF1dG9HZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAAAABJbWcgAAAABmJvdW5k c09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAA AABCdG9tbG9uZwAAACEAAAAAUmdodGxvbmcAAAAcAAAAA3VybFRFWFQAAAABAAAAAAAAbnVsbFRF WFQAAAABAAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFnVEVYVAAAAAEAAAAAAA5jZWxsVGV4 dElzSFRNTGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEAAAAAAAlob3J6QWxpZ25lbnVtAAAAD0VT bGljZUhvcnpBbGlnbgAAAAdkZWZhdWx0AAAACXZlcnRBbGlnbmVudW0AAAAPRVNsaWNlVmVydEFs aWduAAAAB2RlZmF1bHQAAAALYmdDb2xvclR5cGVlbnVtAAAAEUVTbGljZUJHQ29sb3JUeXBlAAAA AE5vbmUAAAAJdG9wT3V0c2V0bG9uZwAAAAAAAAAKbGVmdE91dHNldGxvbmcAAAAAAAAADGJvdHRv bU91dHNldGxvbmcAAAAAAAAAC3JpZ2h0T3V0c2V0bG9uZwAAAAAAOEJJTQQoAAAAAAAMAAAAAT/w AAAAAAAAOEJJTQQRAAAAAAABAQA4QklNBBQAAAAAAAQAAAABOEJJTQQMAAAAAANPAAAAAQAAABwA AAAhAAAAVAAACtQAAAMzABgAAf/Y/+AAEEpGSUYAAQIAAEgASAAA/+0ADEFkb2JlX0NNAAL/7gAO QWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwM DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwM DAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAAhABwDASIAAhEBAxEB/90ABAAC /8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUG BwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLR QwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZm doaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKB kRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aU pIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fH/9oADAMBAAIRAxEAPwD1VJZHVLG9 O6hT1Z8ml9ZxMiPM+riv/wC3fUp/9CFU/wCdNvqa0N9OeJO6P630VBm5rDhIjklwk+HFp3Re/g9E kgYmXRmUi6ky06EHkH91yOpfchwcfEOCuLi/R4Uv/9D0T6wY32npV9e3eIBc3xAPu/6K4ptllHsu l7B9G4CdP+GaPzv+EXovPKysn6uYdzy+pzqSdS1urfkCs7n+TyZZCeOjpwmJPD/hRWyjeocLo/VG 4mSHh4dRZpYAZ0/f/sLrvtWN6fq+qz0/39wj71l0/VfBY/dc51vlAaPnHuWp9lx/Q+z+m30YjZGi jhyvMjlsmEgVKjCPF6vmjKXq+VVGn//R9VSXyqkkp+qkl8qpJKf/2QA4QklNBCEAAAAAAFUAAAAB AQAAAA8AQQBkAG8AYgBlACAAUABoAG8AdABvAHMAaABvAHAAAAATAEEAZABvAGIAZQAgAFAAaABv AHQAbwBzAGgAbwBwACAAQwBTADMAAAABADhCSU0EBgAAAAAABwAIAAEAAQEA/+EOlWh0dHA6Ly9u cy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhp SHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4 bXB0az0iQWRvYmUgWE1QIENvcmUgNC4xLWMwMzYgNDYuMjc2NzIwLCBNb24gRmViIDE5IDIwMDcg MjI6NDA6MDggICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcv MTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIi IHhtbG5zOnhhcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6 Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5h ZG9iZS5jb20vcGhvdG9zaG9wLzEuMC8iIHhtbG5zOnhhcE1NPSJodHRwOi8vbnMuYWRvYmUuY29t L3hhcC8xLjAvbW0vIiB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIg eG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iIHhhcDpDcmVhdGVEYXRl PSIyMDEwLTAxLTI3VDE3OjU3OjQ1KzAxOjAwIiB4YXA6TW9kaWZ5RGF0ZT0iMjAxMC0wMS0yN1Qx ODowMjoyNyswMTowMCIgeGFwOk1ldGFkYXRhRGF0ZT0iMjAxMC0wMS0yN1QxODowMjoyNyswMTow MCIgeGFwOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ1MzIFdpbmRvd3MiIGRjOmZvcm1h dD0iaW1hZ2UvanBlZyIgcGhvdG9zaG9wOkNvbG9yTW9kZT0iMyIgcGhvdG9zaG9wOkhpc3Rvcnk9 IiIgeGFwTU06SW5zdGFuY2VJRD0idXVpZDozNjEwMzdERTY0MEJERjExQkU5QTkwM0IyODQyMkRE NyIgdGlmZjpPcmllbnRhdGlvbj0iMSIgdGlmZjpYUmVzb2x1dGlvbj0iNzIwMDAwLzEwMDAwIiB0 aWZmOllSZXNvbHV0aW9uPSI3MjAwMDAvMTAwMDAiIHRpZmY6UmVzb2x1dGlvblVuaXQ9IjIiIHRp ZmY6TmF0aXZlRGlnZXN0PSIyNTYsMjU3LDI1OCwyNTksMjYyLDI3NCwyNzcsMjg0LDUzMCw1MzEs MjgyLDI4MywyOTYsMzAxLDMxOCwzMTksNTI5LDUzMiwzMDYsMjcwLDI3MSwyNzIsMzA1LDMxNSwz MzQzMjtGQUM2N0JBNzIzMTNDNEM4NjY4MDlEQjJFRjA5NjI2RCIgZXhpZjpQaXhlbFhEaW1lbnNp b249IjI4IiBleGlmOlBpeGVsWURpbWVuc2lvbj0iMzMiIGV4aWY6Q29sb3JTcGFjZT0iLTEiIGV4 aWY6TmF0aXZlRGlnZXN0PSIzNjg2NCw0MDk2MCw0MDk2MSwzNzEyMSwzNzEyMiw0MDk2Miw0MDk2 MywzNzUxMCw0MDk2NCwzNjg2NywzNjg2OCwzMzQzNCwzMzQzNywzNDg1MCwzNDg1MiwzNDg1NSwz NDg1NiwzNzM3NywzNzM3OCwzNzM3OSwzNzM4MCwzNzM4MSwzNzM4MiwzNzM4MywzNzM4NCwzNzM4 NSwzNzM4NiwzNzM5Niw0MTQ4Myw0MTQ4NCw0MTQ4Niw0MTQ4Nyw0MTQ4OCw0MTQ5Miw0MTQ5Myw0 MTQ5NSw0MTcyOCw0MTcyOSw0MTczMCw0MTk4NSw0MTk4Niw0MTk4Nyw0MTk4OCw0MTk4OSw0MTk5 MCw0MTk5MSw0MTk5Miw0MTk5Myw0MTk5NCw0MTk5NSw0MTk5Niw0MjAxNiwwLDIsNCw1LDYsNyw4 LDksMTAsMTEsMTIsMTMsMTQsMTUsMTYsMTcsMTgsMjAsMjIsMjMsMjQsMjUsMjYsMjcsMjgsMzA7 NENENTlDQjM1RDUwODkyMkJGNTM5RThFOTc1MDg5OTIiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0 YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8 P3hwYWNrZXQgZW5kPSJ3Ij8+/+4ADkFkb2JlAGRAAAAAAf/bAIQAAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEBAQEBAQEB AgIBAgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8AA EQgAIQAcAwERAAIRAQMRAf/dAAQABP/EAJMAAAICAwAAAAAAAAAAAAAAAAAKAQgGBwkBAAEDBQEA AAAAAAAAAAAAAAAFBggBAwQHCQIQAAEEAAQFAgYDAAAAAAAAAAIBAwQFEhQGBwARExYIIRVBIjIj FwnwgbERAAECBAQDBQQLAQAAAAAAAAECAwAREgQhEwUGMRYHQSIyFQhRYaEUcYGRscHRQlJyIzM0 /9oADAMBAAIRAxEAPwB/bn/P99OXw4pP7YInn/fFe2UETwQQcEEf/9Bujydvq7xm8gttfMS3anPa D1Bt/ZeMO8DcFVdeiLaakDXGweom4zjjMdG4m4Ltvp03DNBFzVzLhqLbJmOuOoG6LDp5Y3m/tSZd c062tFoeQ0ApxdP9rQQkkAmoLSZkBIWVGQBMNDVUDS9xaZuA4WrrJs3j+2peZbrPuDlbR4YvJivg ftF1Omo1N3aui7TzWHIhd2CajGH1MOP3ImFrTlCCc8OUEFL5cSfVxBBPr613zsOK6f2nLmZ4M9z5 nLnxzacorAxlkgTwmOMLXmKqsWxR9f3y/COo2027mit6NHQta6HsFl10gljzIcgRZs6aybADkVVt FE3MtNYRxF9FIHAITAiAhJZ99Ouo+1+qO2bTdO1LzNsnDStChJ1h0SqadRM0rTMHAlKkkLSopIMK LbiHUhaDMRs3h9xcj//Rcs8/Nuvyj4q7naYOsG7hjDr7a0qFFw1nU1XYR5FwjatL1m3YdarsgHAU XGyZQgUSQSSPPqi0jWdU6Mbme0Ar8zsFsXiaRM02zyVuECRnS2FrUCCFJSUkGcJ+q2bN/p91aXDQ Ww4khST2g8fzBGIMiJEQsVX3uodBAFNrkLXUGn4iC1T7lwIT9q+cBrC2xF3Dq61l2wrbmI1hA7Vh l2vmonVdWM6pAvG1+zsdaJu9HLbF8v8A0tFKCBVOZNstfdUhRxSypQdbxQnMQAQyWbm70kC11MOO 2qR3LlKSoy7BcJSCpKxwLqUltfiVlqJBvN4e+UNfsxuJCuGNR19pt7qdY9ZrWFXWcOe3kCcIYl9H ZjyHFSwoX3CcROWM2SeZ9FNOW4fT51X1fotvxi41Nq4TtS+Ulm+aKFeCfcuEpli5bklQkCVNlxse MEOCw1O1KkuMXba2lcaVBQ+nAmRhiH8obb9t94d+aQ7VwY+4u4ar2bnl830vcM1lszlvn6WLqYfX Dx2K592R5LzHzbpvkMv+j5hrJnTXTmV01040Tql2Q481umvMFHtmJR//0n9TbB0DbdEXG3BIHGzF DbMDFRIDAuYkBCvJUX0XjwttLiVIWkKQRIggEEcCCDxBg44HhHPvcr9c2z2s7mTe6Ut7zbmRNfck SqyoaiWen0ecJTNyDWzOjIrkIyX7bUhGARcLbYD6cQ2316Jeme6dSf1Xb+o3eiuOqKltNJQ7bTJm S20ulTcz+lLmWOCUJGEYK7BpRqQSn4iMa0h+r7Y6otG7XWVtd66Jp4Hsi7CqqCFJICRUSc7Bak3D yck5fblsry+PGJtb0PdP9Hum7jcO59U1RhHBgKFsyoTnJYaKnSP4Oo4mLI0m0Kq3W0qV70p+JlP4 xfH8X7d9k/jjsvTnYmUyXavtUX2fofViyvTw5nqfc6/PrdX7mPH83EquQ9mcrck8sWPKeXR8rlJy Ze2iXin3q/HX36q+9ChlN0ZdAo9kf//Tf44IIOCCDggg4II//9k= ------_=_NextPart_001_01CB4F51.E0BE612A--