Deadline Extension CFP: Perceptual and Statistical Audition (Martin Heckmann )


Subject: Deadline Extension CFP: Perceptual and Statistical Audition
From:    Martin Heckmann  <Martin.Heckmann@xxxxxxxx>
Date:    Mon, 6 Jul 2009 14:15:04 +0200
List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>

--=_mixed 00434BF9C12575EB_= Content-Type: multipart/alternative; boundary="=_alternative 00434BF9C12575EB_=" --=_alternative 00434BF9C12575EB_= Content-Type: text/plain; charset="US-ASCII" Dear AUDITORY list, to give authors a bit more time we extended the deadline for the call for papers for the special issue of Speech Communication on Perceptual and Statistical Audition to the 27th July, 2009 See the call for papers below for more details. Aims and Scope Current trends in audio analysis are strongly founded in statistical principles, or on approaches that are influenced by empirically derived, or perceptually motivated rules of auditory perception. These approaches are perceived as orthogonal, but new ideas that draw upon both perceptual and statistical principles can often result in superior performance. The relationship of these two approaches however, has not been thoroughly explored and is still a developing field of research. In this special issue we invite researchers to submit papers on original and previously unpublished work on both approaches, and especially on hybrid techniques that combine perceptual and statistical principles, as applied to speech, music and audio analysis. Recent advances in neurosciences have emphasized the important role of spectro-temporal modulations in human perception. We encourage submission of original and previously unpublished work on techniques that exploit the information in spectro-temporal modulations, particularly within a statistical framework. Papers describing relevant research and new concepts are solicited on, but not limited to, the following topics: - Analysis of audio including speech and music - Audio classification - Speech recognition - Signal separation - Multi-channel analysis - Computational Auditory Scene Analysis (CASA) - Spectro-temporal modulation methods - Perceptual aspects of statistical algorithms, such as Independent Component Analysis and Non-negative Matrix Factorization. - Hybrid methods that use CASA-like cues in a statistical framework Guest Editors Martin Heckmann Bhiksha Raj Paris Smaragdis Honda Research Institute Europe Carnegie Mellon University Adobe Advanced Technology Labs 63073 Offenbach a. M., Germany Pittsburgh, PA 15217 Newton, MA 02446 martin.heckmann@xxxxxxxx bhiksha@xxxxxxxx paris@xxxxxxxx New Deadline Papers due 27th July, 2009 Submission Guidelines Authors should consult the "Guide for Authors", available online, at http://www.elsevier.com/locate/specom for information about the preparation of their manuscripts. Authors, please submit your paper via http://ees.elsevier.com/specom, choosing "Perceptual and Statistical Audition" as the Article Type. If you are a first time user of the system, please register yourself as an author. Best Bhiksha, Paris, and Martin Dr.-Ing. Martin Heckmann Honda Research Institute Europe Carl-Legien-Str.30 63073 Offenbach/MainGermany Phone. : +49-69-89011-755 Fax : +49-69-89011-749 e-mail: Martin.Heckmann@xxxxxxxx --=_alternative 00434BF9C12575EB_= Content-Type: text/html; charset="US-ASCII" <br><font size=2 face="sans-serif">Dear AUDITORY list,</font> <br> <br><font size=2 face="sans-serif">to give authors a bit more time we extended the deadline for the call for papers for the special issue of Speech Communication on</font> <br> <br><font size=2 face="sans-serif">Perceptual and Statistical Audition</font> <br> <br><font size=2 face="sans-serif">to the 27th July, 2009</font> <br> <br><font size=2 face="sans-serif">See the call for papers below for more details.</font> <br> <br><font size=2 face="sans-serif">Aims and Scope</font> <br><font size=2 face="sans-serif">Current trends in audio analysis are strongly founded in statistical principles, or on approaches that are influenced by empirically derived, or perceptually motivated rules of auditory perception. These approaches are perceived as orthogonal, but new ideas that draw upon both perceptual and statistical principles can often result in superior performance. The relationship of these two approaches however, has not been thoroughly explored and is still a developing field of research.</font> <br><font size=2 face="sans-serif">In this special issue we invite researchers to submit papers on original and previously unpublished work on both approaches, and especially on hybrid techniques that combine perceptual and statistical principles, as applied to speech, music and audio analysis. &nbsp;Recent advances in neurosciences have emphasized the important role of spectro-temporal modulations in human perception. We encourage submission of original and previously unpublished work on techniques that exploit the information in spectro-temporal modulations, particularly within a statistical framework.</font> <br><font size=2 face="sans-serif">Papers describing relevant research and new concepts are solicited on, but not limited to, the following topics:</font> <br> <br><font size=2 face="sans-serif">&nbsp;- Analysis of audio including speech and music</font> <br><font size=2 face="sans-serif">&nbsp;- Audio classification</font> <br><font size=2 face="sans-serif">&nbsp;- Speech recognition</font> <br><font size=2 face="sans-serif">&nbsp;- Signal separation</font> <br><font size=2 face="sans-serif">&nbsp;- Multi-channel analysis</font> <br><font size=2 face="sans-serif">&nbsp;- Computational Auditory Scene Analysis &nbsp;(CASA)</font> <br><font size=2 face="sans-serif">&nbsp;- Spectro-temporal modulation methods</font> <br><font size=2 face="sans-serif">&nbsp;- Perceptual aspects of statistical algorithms, such as Independent Component Analysis and Non-negative Matrix Factorization.</font> <br><font size=2 face="sans-serif">&nbsp;- Hybrid methods that use CASA-like cues in a statistical framework</font> <br> <br><font size=2 face="sans-serif">Guest Editors</font> <br><font size=2 face="sans-serif">Martin Heckmann &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Bhiksha Raj &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Paris Smaragdis</font> <br><font size=2 face="sans-serif">Honda Research Institute Europe &nbsp; &nbsp; &nbsp; &nbsp;Carnegie Mellon University &nbsp; &nbsp; &nbsp; &nbsp;Adobe Advanced Technology Labs</font> <br><font size=2 face="sans-serif">63073 Offenbach a. M., Germany &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Pittsburgh, PA 15217 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Newton, MA 02446 &nbsp; &nbsp; &nbsp; &nbsp;</font> <br><font size=2 face="sans-serif">martin.heckmann@xxxxxxxx &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; bhiksha@xxxxxxxx &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;paris@xxxxxxxx</font> <br> <br><font size=2 face="sans-serif">New Deadline</font> <br><font size=2 face="sans-serif">Papers due 27th July, 2009</font> <br> <br><font size=2 face="sans-serif">Submission Guidelines</font> <br><font size=2 face="sans-serif">Authors should consult the &quot;Guide for Authors&quot;, available online, at http://www.elsevier.com/locate/specom for information about the preparation of their manuscripts. Authors, please submit your paper via http://ees.elsevier.com/specom, choosing &quot;Perceptual and Statistical Audition&quot; as the Article Type. If you are a first time user of the system, please register yourself as an author. </font> <br><font size=2 face="sans-serif">&nbsp;</font> <br><font size=2 face="sans-serif">Best</font> <br> <br><font size=2 face="sans-serif">Bhiksha, Paris, and Martin</font> <br> <br> <br> <br><font size=2 face="sans-serif">Dr.-Ing. Martin Heckmann<br> Honda Research Institute Europe<br> Carl-Legien-Str.30<br> 63073 Offenbach/MainGermany<br> Phone. &nbsp;: +49-69-89011-755<br> Fax &nbsp; : +49-69-89011-749<br> e-mail: Martin.Heckmann@xxxxxxxx<br> </font> --=_alternative 00434BF9C12575EB_=-- --=_mixed 00434BF9C12575EB_= Content-Type: application/octet-stream; name="CFP-SpeechCom-Extension.pdf" Content-Disposition: attachment; filename="CFP-SpeechCom-Extension.pdf" Content-Transfer-Encoding: base64 JVBERi0xLjQKJcfsj6IKNSAwIG9iago8PC9MZW5ndGggNiAwIFIvRmlsdGVyIC9GbGF0ZURlY29k ZT4+CnN0cmVhbQp4nNU923Ict5Xv/IqpfZpJia3GHfDTKo5XcSp2sjJTedjsA8mRSMW8WebIVn5j 91/yewEal3MAHExTXimpTcpVrWk0cHDuN4A/bOaJ8c0c/p8fLm9P5s1L/9/VyQ8ndhLhf8sL/Hx5 u/n12cnzV2bD1DTPXG7O3pzMk3N2tnYZwTZiVpOWG8PYZPjm7PZku9md/TV+xCZu0ScqfcK5mWa5 0c5Mbvnkv7Zf7k75ZBxnbnu+Y3ySs2bbm90pm6wQ3ORH5oyffp6skUKa7ZvdqZuMlUJv73d+faln t32345My1uKBf9ydykk6x1WYPg182J3ayTGu+fZ1XFNa+PrH3akHW8+cMz9TWec7mOmhzPS6PF2i r956mP2sbjZ5T37+G/gRwfc1LIDXxc+HMgWshmaA/SOkbHbc2P8++90aCa2ZNCIHoqBefuooyJya /FTayInpSMHvFlilkkYFdJfnrwbPieKefba/DRBbZ22A2ANhZ7a8zz/+YXcqJi2MY9tvdtazmWbc P7FJ81nw7Z9gpm/ho6+pmV7stAd4FmJ7tjs1E5+ldn5kwSJa6dudnAQTKlC/oHDE0M5Nim+08ohP 6Lgv5LpD5IoT2TFetZ5mu9EizYIRmcjutOfRwLhcGu35Lf8Irx/CR7NzRnlpelxmMIJ7RB3wi/Pd qZqEslZ5niwIQByFBtzFD621Um33+B9oPGYAvOp5AQz/6oVDT1wwGTieHlBmhk1WQJcJNvD4YqEa 9yAcPP3nWTseAM6kfrswBbMLXuw0GzdLvNI93tuyazYzxhkm3YAHrJi8QLB5Uol2L3bMeq5Qy16D RKqZbW+9+Hvauzlv24gsxsILYEJW+PFu5ydUggWE56ekh5Su9NBlUZj3cadKLUyQHyNnGCbKLtzG wymMARZkXh8nFvT63NsI5UTQ0Uk568mLnJRBCU2WCRZYkEmvKHl44h6n2i0c6qnDTQA+AOoFVUaa zso4qwIAp1aF0QuLeFRqKczqFPu86o8BEG9p5IIJE9YXAbuwwF0eigaclzkL+HuYvPrcS62YhFuM xymb3cSURd+X2c89SYzkbDFM8PmHOC3ziwKo1QLkDpbZhBOSxkQBxcTPPZ/wgj7/OfroPgNYIL3K DwlQrQzzcKJtLlDMNtiNSFID0xy6+fYLC/mde/4JnsTZ3jMIwLrvEWgyBpal76ilu20JpxDa0V7x VNVX5de3MPiyUAnmuoHXCIAH4Gsvs84ah+cpm78s06C3D2VHaG7ACED5LIis1yyO4aXvkUhlMlKv kTyg17CxB3j/QEx537Nu2o23cNfLt9qrgQy4wujN63lRRaS4Xmb0egLx72Pkjll7Jcwyd3gvRDqv ZFx4dyqlmvx/G+8GxdcAUAaXSw9G/tEvzqWdmDWtpJf9voHvKnEs3AuzIVLmn+DlHimPvOZF/u0D fhkMvcFUvg06VinvlxTkvyUVXLUHzKCkQmmEtoNu3+9wtNZ7GArCWlD4zBPbzLOVMHvgmfI+zyod HvBwdPnLYIK8H6oMWrN8gjjpALy5sI8PDwwrygXj4Dg+VCKDjpq8rEPphvdFagH1eOgxrlB4lwdA 0g35fSVHgNo06ZtK6vNrgOmIyVrWwTBTqqRS9UC3MhdQpqJcLxwPKwhtTE/QC1NUeEFSyuI2eN7B tRDeMQIV8rqokB+D28SVChZw4Z9F4WENkvkjLO1jmEaJFDixFky+ClKCedew1WuMFCCe34LznuVC fuZmD5qtVVY2mpXKyiNpCcmfYDwjy8LFxLknA/AoKbMBp7Of3vtl50cBNhVn5MUrx+w6Dygjr7pf xt7Pwgu1ecsrXwC8B4qDyiY4zA+4+sk/acuNwVMipkP6b9Ecgk1SuKw5zgcymNZLYAg/RAICaHWA PtsTUnaOIPZM62buAGSNdcTDEK0SL3LRDessr6igQoyGBBoYLf+4ItAI0pHPlFc8743qngCMdFmx x0BqE9ACA+fvsswAc91UBKtURmKMMFWI0AN3PPTWjctBNAGCiqx65fjBR43mz86+D/uk4QxbxXMq 2EFDsZEgpZbwa9DnVTDRw1TE8Qa21AZr3IZ/2XGMlQfEaT3BYNrjzkETdnWkiPYwb+X4XMiGUibw dqFTYbvWD0ROSgxt5mnJjC1MMlVKbdmtB/IsRAmSc04bjQz4rGv70MjTk4Icyv8HkSqaAH/y0NLH fzLyN9JrLIXXlHMAS5LbRMCDyr5veXLWT7PT5hcZaqTh82oRPfOiRss3SEOD1/Ge8EQQCz0rUa8z AuKauJBQOIA6RwHUYor1zNsQyKPdsz2EQIi2rd9aRDGwoRbIMrwmnIdKj3iEOCc5zrR0Zl6SMWKR 4aui4q4JbVH5lhk+AOvnjsI360I/8HTyXlaMTgZinHPJI+DHCtFIvY/ijg2ohAhN8Kg3JX7aU+Lz vifaTSXkyD/ISshzY+a0OoFSxl4h/Oflkal4S4YjeN0WdWFPkAKrVUV+P7YqjXro4/oqsigMNSXY c3ry1AcJkzXWi4cJWfUFA18veRmnWkvJZz+dHPiyiJi1KU5fJSdDOzogIo3+IFBHs5KrwlIHain0 eVJPTKlG1cL0ZBIEgoVqBNLM5HIDchbN9fH0JCOdWj2nvCCCrbIVC2jYcyz6CEUTt0lQvAZmSE7y hI3znpd8AMPSGaLOt5CMN4AnyPqQqHpJ6TUsjFeYVF2SkY6u0AIrOjAPo7KAsMX3FAy9AYDtoyCg 0vt5uT5VnIRKyZzFCOb1ojyhCemsLpUd2JffWgffeAvBKgc/eiKSOYok3tX/votWZEVZlDdJb3FU lt5SxpXMFDw0aInA5GzzOD3rXyLRKs4qqJZnYNTIjECkh1RUeNa5eMuMD8R6fepbMTpEHOXoulxE o8rT67LZDyD0PSPXOQDEjWmWlIgW3HMD68sUrdoKDIXAwfz4QycTo9RenVZIvvRTswqA33us43Lk cpFlSTTOQAdTQIKxgZKfLs33hKxARvwvyQqUdT5bWgAArZVGZI/ih/8zUwLPik+LCgrnxEDydR89 Ib/8Lb02Vd5A6uueeE3qhDCfUDiVRHgBjVZK80GZ5ECFsx0l6wqQWuUuw6Y6sbKWPq82vWC5VCHE 7GM7k3XHinn+AAEg8GjFuHmP0w5XWtKSKD3+aim2h2p/pX17Sb1DkorTcx2q9pSTiDFZXlPLVFFs mX0QkaARhGo6EIq8EAAwVEkWEcG0uZucB0jlg67aYuvw/FjI3+qHyAK40ABgECU/pO4bQz2D4jbG Mrv9G1UcK5TCQk/HNnWBNA1FmiiZjrmKbVB2LDse1eyEeHUZwbRUTcKmAC5MHWxEubQ4C5XXR1MO lU2tYrBpIBhJbk/hR7qiB2aVxg2R1m9S4ElsUwwifAwCKcP7TjMNSoS0TzBI/nVSgsCoowjktqb3 1wQgR5Oi6Fu6rrBS4m2bf1ZqhYFoTaI1rf7nHTMTk4xipz7vtQg4eAD3RcAh/EAhKSTqrpAmGJQc E4lxeAGCjdBafFXQDkQuKnzU64XcgUR6x4tLVwWXdXqGGDDKtvfhpzBH7BskOEpM0/VDVfFngoRw plB+T0NOjN5/6yAsiqHptiIc/2EYWlUgC5meGISKUUNAXvYnqv5IqZTviY/pdEJy4mkVRnhcdwif eU9PDl7Qal2VkaxRoG+Qn/JzIUnnl2KxP5KnIXZN2zxUDe7DoTcosKa4MEqnwErgaP0F4sNFxyyZ fzPNXQZHTHJewBsVH7MbAdJfBWlDaxc5HgUlZV/e3KXU6KA0uOYJ0NaOrD2AUqOMXB+I9JzTRifg O7T1LTMrVQdJGQoih/euM/ldOv8SxQStOW69HzTdsG0yWyuodw24+vpotq+qJsSMppi4lajIlN8f iZkpL6IPPUZuxpE2tLbigYwOyTngVlBNHLRCzIyMI6NYCHBsUlwshQAtIz6WjnjGFNe4sXct01FH 09b/LJtKDdE/c0nxQ8W9F61Cw4b0qnLF0prH6sG12/y+V7/YKc89QvXcAUrVJBxy4eE1bjwgapw4 31gFdMv0gjb71MC1Pp48jkx5kQ2aBXCUncqeN+PF84bIO6ziPJ559lbEbOg8OIIHBOWeMF60wIxa 8QZZl7QStd9nC/BWawz8BdKuTcI5RSLJFS7TUP1CaNwNrSNuvcGaHLcjHdZuZ+amzFpV/8FcPqub /8rIxqxHrzsb4cZwKk93W3ftlPomJhILesJU8Wd5C1WAUeXsiipjP5JOKW7ubdt4Q9ID9MwXONjP 5y7YjA9ecDbNwoXt2XCYym9v+/dy8AqGeYhml9tht+loVnWCI/RmS6GzGLwoO14/r4DDynxagaqZ ZjNMtSRR1flD5x+8JWgzqtgTSoBu7N6T9OgPPwCIOMlQDmtAAoiseFw38ELp/2gjQhgG9nCU8KwP K8ReAopbwrFBYUVonPdg6c/BLh9NtEvKhIGdwOVv8jRM36zQ98U/wYNsAuanIFDaT4fA75BLQqRL yDTudc+ZZCsxfIEbc3uXua35ky4w2XL6L0PVICeBNtXXmoSpRLm4akT9ivTm/z+wUzjiKm3oSV7t 0Kwyyqe0K9eh467boaR9UbrrClHnF9uUWT1Jy31KrH5ZyiqFwkQC/9ClLtvQkMR/28/2hGRaVqG0 9u3zc60/kkbUJz1alZLFzRlGp2rvsA1EGdbsub0ofvsxwtelftK64WQTtHsVM/mXLewDKAWr443A r3/ZZZXJ/9lGc0XnV/kb4hQYLlagSkwfBRI8Sp3lWNGUx/M2a9mQYyxPJC5RsqhLBVDpxR6kf5mS wMmF9XrHqGWi8VHXdQBV9V/pSHyk3fQy5aDfe6X7dUzzfrExV7TppNArQG09djQQ7STgDFAJo2Ga jahtDQ7f5jwT7jBERXDC74/HWvlkuYLTRajGixIPeZmvi2RXR9kJspK0xkkWvpRPybdVmJ/39eXi GRmuXGvtwtHI8RGk1e6CvMDALhC0hJzpql1AsdWxSwDQwG+bzGJM08cn7lVrzCJ4sgkpyW57QOhV L64jF5Fo5gZV+82ilLU1nHY2R6nEn6kkxH8gs0c1BlLdO6MF/kYkeZ8YKIRWv3KWkx1RylYveP60 pva3xUMCXjrWEigMeSQAyiC9OaJORgxunSDzQ+M2v07XH/pZKTb6MlSYJqWsQB5icjpkuNQjSaBW yIMYJPe+p/k1SjIo6wOdDm/9NomnpssYuM08ncT5yNoFUYh9pPu9ySIG3aK4VsOofS6tPqaG0cbT K/fEcGWnfMfPy9CdHnrxwznR5aaXfMVTuAYGbol5DDdT2ZkFZJf7Yr6Ca2Dgmph834zW6KP78vrd comOd5pFdQfN+tUwEXTpF08Xw3wTjnKz5Xqq885d4nKoQSl3EcT8NaHpvq+se3Jmj8W0YWptlPN7 2f66RBTd0RAsHkTR/5yQmFdgXGHTf00VmXitCeNBFxZ3Mqpv4lguzemIVb8LqW2pnUVMOUhsFGcE vKc2OwrrIOc6FaV/f3L2K6xrqWh2T6MlaqyEFlEXn4gMTc8p9DkSdPwTu1Kd+hwxGfq9PXnelshh F1/FywmkE4NuxRIvNz1qoZTvIfaeh0enRUEsSS7kcBF0o9segQOzj2GpImLTgU/3E+WZ/oT8uMIr ubKm59LJgm8iyGnqtrzadfA+Vl5gUZCn3IrwL+RE7jvje0H5aEgwiG/f99xJn/IdHDCMGDmLuOVO kHHXNYFOXC0k+kauoG/kA+oQKWdHf7/j4VZGi6qyF7ibuBbX00wZ3E2iARiRgZnzg8kPgjpQ+Yci 8W9yHwnKyhMBxwXl8B8XXxg3VV3h+REynlOB6xk58iV1OK7r66m1ZIE8MiGLBUklnXckah09TqI/ kooaV2c7VVECirYlvg5B8frA1IjTWf5c5QcOFGBA5Ci1HjsCXbzktxlSJAJFSpRPQ14igzi8uh0o Axapxi2n4Z4B3PQg4aHMrLFiYNp5jkmM/tXZyX+eRL/j1cv08O4pl5WuezCzmtK1o5QvUfsvZHxU WArxM+pS66Wi+Bgrzkt6+Pedmhb0oKiEMsdNSjZoZYgGej8j7gPBjK5PkVIWrHv23XhahLDN6I3c vHt98uYjbos9RgDuo0TFMQlAFX1GuocWPI1XveikE5H3aR5hJJKxOPTAxzxK7HNJRBaHhoOCxJCW 6bBT81zwwpyYI2m85fi0lBHMTRZQFCPzz0IMYVy4JBNR43jRjvaSAf34pMtRPyIPQzgfHLszxk7z zAreBdMi4l1z9mnxLpUMV75SiGfLEI/4+PAkxK8EnsyGC4Uj1r/dlTuXX5crRH9aso0yXJGbwswQ Rv6mGppCRrioeQ+Xjca7ZMXso9m38HhX3UYavlLQFbOqsD3yJynRjbil/69LwfdeAS/9pFIgZVOJ 2NjX9KtwsLFJFAPIOlwAgy5TVjrfnypZqEkwHZt6AswhCBdCiaDP0RRH7mCVOmhJvG/kBP0OXeGT o12yMd6RXhRsaO4eXFP0TvL/VD5fYz7hAqvn66JD4sKqpR93uZ/XBXFNCZDbcKWvEMwWNgrZDkhX /Fh4DyU7IMUBl+du4PXLBUdW+clkTrXU2RJIoQCXDxmamZDvFEh2Engfd9Eu8+Kmbb4yuCsGH01R jjpcmWKhtwz9eE2EK7i9AJin7unMMxF9KHd1Zp++U4qLLhOap6RqgXWHfxr4byGHNfug3FMwO5qH 1mzXl8HhDKTi3Mdza5dEofVeoFXIk0zrhFgsFMBd+c95GZSyQaFr4BsPup+sXICJ7R/CK0RVyMjR V1CiVfuaz6DHNb6fOb4lqe7phI0I4tR21cr5+Zz5cLFHkp7rjlpdIgjOZ3+BRzwf/gO6R6kn5Ep3 F+y0dw9VV29Uabk2G4WYCS2APZUumHgOW2zuWCoJELKjLuYsscSgmRInr14IgeBp/aYQSbjZKznh VZyIbtP/0ZOXJjiPheyVn/pJIhTvj+mKr950+b/+ojopxKTquylBP67fT9clLR5jT7OriqV0u0Va Gb7t746s9FieGH27qorzwAeq8eiXN991Z636IBctPuppgE0cOzKGF6Jph+lQp73iGdIlwyLlJOZy BRw+tJ572OlWhYcyEZ1Lqu7KrS6LCxllXef7sJ9A6zwqcUB6xPUJqwUTrjq8R2koqsWX4BdHeQbV FU65JDtqdAtTef/IGdRX2PgvUtH0dJgbn3pOKH+t6fuRcN2Dq7lSdZ88ZaFDCniD/kZOb9+6Yydo f18UQX8OG3hOugf4DqBy2QOZmEC+AnXlG4m0Y4YthuCdawmS+JwUFtoeEdO09ohzH5pZL79s1vwT 5088pQTH9KqzpknJEJnye+ybr9yKQh1tQJz4/BVjGEZvy7wLV1op/id/9Ee4g7siT2/csXKHTPUj UPIQfxZMxj/10l3uFTYvfagjNXp/h77aL0XOGHRized9hkmzWvPhvstH0GfnWDRSGWNw7h59RZ4O Pe+c6aKKfPjqB6ta/Rac7EuttqkjtH9Rom6wiROES1j/F7UAeZoSEaST08xssT6UGl5tUan1dNeF /FEnaUf3feRpUzEtHL6D3h0iV1PdiZPTplD0pS+i/NB3CR6q2LU/qjP88yrd7bR0uwjSamTEV8c/ eU+Dc7m4zYSocBJX8JGaFNa5j/V85x1XViq3b6iR6/5ed+SYaO9+pHT8bSCB9WaH0VUj6l6A11j4 qntz0rYJ9JCnZciLFQcAD6x/8sGgUnsPtdjqGhGgProrM/uAaHMVAarTjU5MVpjBnzHAOUuiUZjq oCFO3z3ZJ1xMcnfWHmcBf1iCOT1Lvbk9YcwrpOX5Jj6rcJDxZhmSHq9P/ry5O/lhI41bLKSWbpNe m/DXB72p4pvf3PuZQ6KbRZdJGK/z/RgVykQbLexGimilf7X4VTEJ7l/EOT2jbMInywdpUpEn/Qei +3QXZW5kc3RyZWFtCmVuZG9iago2IDAgb2JqCjU5MjAKZW5kb2JqCjQgMCBvYmoKPDwvVHlwZS9Q YWdlL01lZGlhQm94IFswIDAgNjEyIDc5Ml0KL1JvdGF0ZSAwL1BhcmVudCAzIDAgUgovUmVzb3Vy Y2VzPDwvUHJvY1NldFsvUERGIC9JbWFnZUIgL0ltYWdlQyAvVGV4dF0KL1hPYmplY3QgMTQgMCBS Ci9Gb250IDE1IDAgUgo+PgovQ29udGVudHMgNSAwIFIKPj4KZW5kb2JqCjMgMCBvYmoKPDwgL1R5 cGUgL1BhZ2VzIC9LaWRzIFsKNCAwIFIKXSAvQ291bnQgMQovUm90YXRlIDA+PgplbmRvYmoKMSAw IG9iago8PC9UeXBlIC9DYXRhbG9nIC9QYWdlcyAzIDAgUgovTWV0YWRhdGEgMTcgMCBSCj4+CmVu ZG9iagoxNCAwIG9iago8PC9SMTMKMTMgMCBSL1IxMgoxMiAwIFI+PgplbmRvYmoKMTMgMCBvYmoK PDwvU3VidHlwZS9JbWFnZQovSW1hZ2VNYXNrIHRydWUKL1dpZHRoIDEyNDAKL0hlaWdodCA4NDQK L0JpdHNQZXJDb21wb25lbnQgMQovRmlsdGVyL0NDSVRURmF4RGVjb2RlCi9EZWNvZGVQYXJtczw8 L0sgLTEKL0NvbHVtbnMgMTI0MD4+L0xlbmd0aCAzNTIyPj5zdHJlYW0K/5aAIqcJ0DpwToOE6B04 ToOiDEOCTDoINwk3SYOgQNwkw6CDDpPCTB0EG6TDgk3QIG6TDhBAw6TwkwdBBukw4JA3QK6QYOEE G6TBwkD0m6CYOCQboJukGHCTdAmDhIG6TdBAw4JXQJh0gbhJugoOkDcJMOggbgk3goOkDcEmDoIH pXCQYOgg3BJ8EDB0m4JMHQQek3CCDB0m4JMHggekw4JAw6Cuk3CCBh0m4JAweCuEg3CQYdBN0mDh IN0E3BIGHSboIMOEm8E3UGDggm6CMkoHb0CBhhwSht0EmDBwSCbeCQd0kQiIMOCSCBtuglbDB6QK 3glQbboJBBsGDgkEtvBdgwdKnbgkrDboJINhh69uCS4boJBNsOCVNt4LcGDpLtwSpsN0Ek2w9e3B LwboJW2HBJK28F4YOk7twSSbBh0Ed2F7b0djgultwSQfhg6CQe23SUJNg3CBJ/DpIgkfbhJAgbSb Bh0Ek3Tt1p/BuCW/sHQJBNq23SSYdWGDhKn9ugl/eEkE6thg6Bek23S/wbgq/sOgVPThuEkrV2Dp f23QX+DDhLv26BJNpNhuv+wcEt9W6BJe4Nwl3TbDoLr26T62GHCS3u3CBeuDev3g4Kv7dAvSsGHC W37DoF/g9evYOl6ttwgX1YYdL/br/huEC/bYdJenbggXrg3X/YOl/huECV6bYOut7cJP+D0C/2Dp euG4IF9bDr/t0v3BuEC+m2Dr+oNwl/fQXq7B0v2wbgl/sHQL726X1huEF6uw6W34Nwk/7DoL6tug u1w3Bf9g6Bf4bpXXtwgu1bYdL/BuEv9g6V0lYboL92HBL/Zx3gtLxul+2w4IL1wYdKn99e+wcEFe rhugte2HBfXBvBX/dL62DggvVwbpP6sHr3w8EF6Tt0E/2wcFT/BvBfbb0vSwwcECb/brX7B0v8Hh BPpbDpaW4MOCV/d4Jb9h0uvDcEE6e7dLfVlODpf43CCvXYdL9sG4Jf7eFf7DpPS4bgl/sPBP+DDp dfcIL1ww4SfrDD0u9vBAr/DB0v7bgk2quweFr4PS9duEF1udpxAw4SO1nbT3CDYek1fwQbl1BAv/ QYMdJN/sJtwS7S9MGDwv/RBId0k/9AgbbhBb66CbBhwl3+Enb1/9NgwcEEn/pN9Bd16TYbglv9pO GDwv90m26X/pbDggk219JsMOl//t6/9JsGHBAv/W7pbf9NhhwS7/Sw3hf+tt0v/psGHBBb66Ww6W 2l6tt6/9LDDggv+9tugvS9LDDpbek3uw4QX+tW9L/1wYOEF3pP7dJp62kmwYOl//8Ev7aW26C2/G rBg6TWurtwgXfXYPX114OEFxXThugmn9sMHS/9uEvtduEE011YYcJNa07dAh6XBg6X/cJP02DdBP rsOl/twS7WwboJ+nYcJP04boFSS7B0v7bhL1wboJtadh0vXDcEv9g6CbvtuEm5ONYMOgX690tb7b pX/gw4QT707dL1XBul/2wcIJv6dulfrhg4IE/+3S/96RXEndfhg4QSeuk23STXfwegv/2DhLTS0s N0u/V2DggV7f7dL/8Hpd/2wcILtLScG6S/3uR+lvXpxcILTX8G6XfpbDggRda/8p3Uf/xulck7+t hwgWk36tg3X//g4S/6rboEtN99g3S1f92HBAv6/Buv337B0tL19uEC0m/XDdd//YdL/fw3CBatrp YYdLp/8NwQL/Xtv+/+wdL2/8NwQK1vddh1//2Hr/9weCBf7+wdLSbS+wbginBf/74//9g6Xtr1hu CBaV19sHSWnfXBv/39cEC0m66tg6XtpX4NwQL69c7QFb/arvYJsOl7f+mG4IEZGgfSb7XBA2DpGS WGj/30wb1f/S0E24IIF1b+rRCHbDpIPr99BBsNwQK//9J2D6IRzP//6cG6SBCeE0nX20E23BAkm9 Jv10mGGHSq///2+kH/3/dg4IEk/t+uk4bpJN9X3ulbDgih1/9dL7eIVPp//5NAIBukt9N/9NhBsO CCO1gM9N/ffpNlYDMDejtVDL///8qgabDpX/v/32w4QSBq31/9BtN4SBENcKT6t/etktBchhhdHa kCol9f/WCBEQHqCBSFgscoct36/v/yHMBhBUkCERPRHDpXpNpf7oiijCUIEFFun1/9KwVtBVSBhr ///oJsEqSBPqtf1/CDdQgkg2k/t/6QbSDaBQkEm0r9un+mwgrBLUJg/X7/9J1ggSg9N/6/vTYIFS QTe6r/62EEG6hAkEw0r6bX+m0rCBUkm/Vf//bC0t//79dK0qQSbSfSbS/2wgg2gVUmGEta9/VtJs JfD//X/+gW0n7X//tbBbdWl9P/06Cbq2Em0m9b/0mGEmGECsGFYfqd/fv/e2EoN1a8k9Pf/20m1t pB0uv2/9JhhJhhAoYYJQYSbS9b7/YhBtK2kx//1/7BoFYMEn69a/9qwWDaTTa3aCv/2EDBpWDBJp 0t6bW/SakF1oFBs71BgNf/W/4aZDOSLgkH6/vr8QbSsHBHY3mPX1f/SBwSg3Qi3X03/q6eDgv3// 2rh2RyKqXev/iCcMMdfV/9JA7Db/77/BODel3T//B2D///9YbtfCX3fQIOw269W6d+kHb139f8E4 N/f//wdhul9Pu+qcN/32l9YIHb0v+9fTsH79bpfSBw3aX7fe6hPBv/vu9JJ09fS//BB0H1/996dP S9K/d6QOCbfba696hOgel9e/6Dgn/36/SdBtpbaTdPfhYIO/6191Wuk/9f4IKCB/1/16Cpuk3a/7 aSUEDtd6b7btQgqb16fv6SUF0u/+vBKgf+k9dtpIKCbDS9K++D0qB6v//aQQKCbaX1/+lTbSv9e4 MJBBYdpO2k3u9hJLbr//yBcilg4aX//BhIEC22l6t7boi2KSw2wS9L+6DCQU1AeGYxX/r4cJW67/ 92krDDTvT/0GQ2SJQoba20r31DKghZLStsL/71EGaRkoYMGF/r9CCBQ2V6G22k+/pWDF47r0gQKG /r70rD69f4N7V7rggVu6eu6Sgwf9/oER/fr74UbDbabp70oN/raqCBW/ev0oYPWv37bffqoIFYPa dbvSg3/v4W30v+gUMN9vvSStv++oIFYP/5GPpKDd360+ErfvvTpIKDDdP9K9K319/ggVg/6/dKG2 0/dLVKw/bX28IKDb6/+lb6fdeglDB6f+2qCttrf76Vg/f/wQKD60/3pW7kndre6SChg20t69tQlb 6td9dKw///wQKDbpPa+9JWG2Et9um0ggoMP+tVrS30v/6Vg33db26CCg3a3pPuoSv//31DBv61X4 IFDdoJu9vbSSsG4S3/1CChv/9K9Kw/3/rSgw20n9tJuggVu//20glh69//BQber62+gWw9J/0m1S g22l+3t0ECt///rYN//S7ShtuulfbSBArBtq3902EElBv6+t8ECu6V3X/2DtLrb3SSht0m9dW8EC sHa79varB3//+rdpN/q2ggQKGDbS9JvbSStul+veCBWHf9f9QbbS/dJ0krDbr+1YaggoMNsLv+ww SS22l+/6Chg20r/ptIJQ3BpO2tqwYJIKw2Qf1fXTZdGgYBBQbYrTX4ikrbC43wwkFYMO7V7QShsM L33SsMML/BgggUGGDBa+VUGErYNN7dMp0gsMf8QyWzJQb/xSsNun0FBv7UJW/3SsH/hAobutUrBu 7dIKDfXglb/0rD98IFDdraQSsHXpwUG/fBbba3SUMO6dQgVt/pKw/9YMNurwgVh++EoN/1BW/8Fs H7elDbdaggVg/XSg3/pW+m6CChht+qVtdvBArBv/UG720krbdOkCCw/9KDf+grDeroIKDdq+lbf8 EFDB/6Vvq1Shg7V8IKG/9K303oFDDbV0glbbq0kFYP/BKDe36VhtpXQQKG3p1St/6wwet4IFDfvp WDtJtJBQf/CVu61SsG2tpBAobenSSsHr6BF1Bvt3BRtt1aSChhuk3SChv6wlg771g31qCBW20m0k sP/goN33gtg3VtJBQbbSbSBBX9+oMH/rbem0gQKGDtJtUrd/UFYf+CUNtpOkgrYcJMNIErB3/UG/ 9ArDdJtIEoNsNJtJLf+CCsHfqlBsOEmGkgrB2k6QSg2/elb/SQKw20m0glDbDCQYaSCsG/qCUG7S ukrbhBMNUChhsNINhBBK3DVtJKwbglBqgoNtoJsoDhKw2DBIMGCSBQbDGxgu2FSUMGDTQQKG4QaS tsJpYMMGEwgQK2DIQcEGQY3UoYMMIQwQQK2IpWGlDYQVtKwaBQbBKw0oNhBW0rBpQ2CCsGlBtAth YYaCg2CCwaUG4K2CUGGlbhYMEoNoKwYJQbS3BQwwShtK2CCgw0raBQwYStoKw0obCVhoFYYLBtKw 0CgwwldBQwaVsJWDQKDYJWGgobCVtKwaBQbBKw0oNhBW0sGgoNhKwaUG0CtglYaUNhBWGlBtArDC UMNBW0rDBKGGgrDBK2lBtArBhKDaVgwQUPVtBWDBKDaVhoFDYStoFYMJQbWw0CgwwSugsGEoNpWD QKDYJW0rDQUNhKwaBQbCVhpQ2grYJWDQUGwlYNLoFBsErBpQbCCsGlB0FbCVgwgobhWGCUNoFDDC WGsG0CsMJQYYQV6sVDBWoPYKGrBWoPYKDWCvBqwUGvYKDVgoNWrChqwUGrVlDhRqwoNWrBQ1agwr UMFavBgrUMFe1BgrUHwUNQwVqDVhWoYK1DUfABABCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoK PDwvU3VidHlwZS9JbWFnZQovQ29sb3JTcGFjZS9EZXZpY2VSR0IKL1dpZHRoIDE0NwovSGVpZ2h0 IDIwMAovQml0c1BlckNvbXBvbmVudCA4Ci9GaWx0ZXIvRENURGVjb2RlL0xlbmd0aCA0NzEwPj5z dHJlYW0K/9j/7gAOQWRvYmUAZAAAAAAB/9sAQwAOCgsNCwkODQwNEA8OERYkFxYUFBYsICEaJDQu NzYzLjIyOkFTRjo9Tj4yMkhiSU5WWF1eXThFZm1lWmxTW11Z/9sAQwEPEBAWExYqFxcqWTsyO1lZ WVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZWVlZ/8AAEQgAyACT AwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMF BQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkq NDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqi o6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/E AB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMR BAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVG R0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKz tLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A gpMj1H50N0NVLiaRJCFOB9K4Urn1k5qCuy3keo/OjPvVD7RL2b9BV2MkqCepAptWJhUU3oOyPWjI HemtEjnLICfUikEMYxhFGDkYFI01H596Mj1qMQRA5CLn6Uvkx7t2wbh3oF7w8MD0IP40tMSJEOVU KfanUhq/UKKKKBi0hOBkniihlDKQwyPSgBNy/wB4fnRvX+8PzpvkxDoi/lQYYj1Rfypk+8SUUUUi gH1opR0ooENboarziIP85yWIHHarB6Go2TJJywz6H/PpTRM1dFLescwbccBs5x1FaCkMAw6EcVGY hjq/HvUijAxzwMc027kU4OLdx1FJS1JsFJS09IndSwHyg4LE4GfqaAbsMpKujT2W2+0TSxxxE4U5 3bj+GaqtGwk2YJbsBzn0xTsSpxew2kq8ul3LsUUIZQMmMMNw+vpURsp97R4RpFOCiupbP0zRZiVS D6lekpSCCQQQR1B7UlIsWiiigAooooAUUUCigQlJS0lAxaKKKACgAswVQSTwAO9FbWi26Q28t/Mw QLkRswzg+uO/pVJXZnUqKnG4yHSYooZJb2Q7o1DGFOoz0BPqaQNdymNG+z2idEV0AOD6AgmtOMIu mpLHI9ukrFnYjdK/XGPc1VtriKLUY4oYgGZvmJ+Zh6lm9fYdPWtLJHEqkpXb1t/X9bmpJbxiTdcv H5Qwqq6gfrnnPpSrplqjh41KMoIUg9AfT9fzrGiu9hkvZT5rqdiMf4m/uqOwHc0641SYXLgvkW6L uAGAzBl3fzIquZGPsal7Jl2/t4LaNALie1iJ/wCWQ4z6kgZ/Oq1+kskcE9peLIu3YSxADMO/PANQ fbLi3uJbdJWfad0O453qRnafw6e/1p6zK2lySiZkj81SCgG5SeCG6Z7fWpumaRhKNm9f+CNlRbm1 llv4nS6hxuZAAWU9DjofwrKuLZoQrhhJE/3ZF6H/AAPtW7YTozCC4IVZgVVk/wBXJn0/un8vpTIt N2Sy26lpLWQ7WDD5om/hbH9aTjc1hV9m2n/Xp/Xkc/SU+WNopXjcYZCVP1FMrI7txaKKKAFHSikz 9KKACiiigAooooAkt4HuJ0hjGWc4FdJdWsVtHF9pY/Y7ZBhP+ej89v8APWqnhu3J8+4ABZRsTPTP f+lLrs8iXeX42cQr745c/wAhWsVaNzgqzdSt7NdA1u8dPs22LypXizknlAew9D71DpWLa/hgwPNk B8w/3Rg4X/GpbvalpZ3sp3FIFVFbnc/qfYdar6Qi7pbmUks25I/UuQST+X86H8QRSVJr+r/8AYWj l1GGGPm2tun+0F5Y/jiqUbFxOx5LJk/mKltBstbub0QRj6sf8Aaih+5P/wBc/wCoqGdMVa67WJrh i9razg4ZAYiR6ryP0P6VdgeMaXdTlFdJGQOnTB5zj09RWdCd9pPF6YkH4HB/Q/pV2wh83R70A4Ys u33I5xTW5FRJR17r8yCGQ2VwjD97buQ4B/iwevsRXQxXa/2s8E4USZ/dOv8AEP7p+lc5Y7ZyLVyB vOY2P8Lf/X6flU90+/V7iPdsJlOxv7rDoacXZGdWmpys97Ca/CYtUkO3CyAMPfjn9azq6TW4nuNI huZEKyx4LD0zwR+eK5ulNWZrhp81NeWglLRSVB0Dh0ooHSimISiiikMKKKKAOp8PFY9Kd2OBvZif TAH+FY2snz9REkeWWdEZAfQirlnLt8MXfsxX88D+tOsI0ltLa8fB+xhww9ccr/Otnqkjzo+5UlUf exDrcYitbFFYP5QaNiP7wxmmoRDf6fa9o9u//ebk/pil0+P7faPG5y0c6ytn+6eG/wAaoi4Mmpi4 PeUP+tS31NYRdnB9L/iSTobfTliP3nnYn6Lx/Mmq8P8Aq5/+uf8A7MtaHiIgagI14VFz+JJJrPh/ 1c/+4P8A0Jal6OxrTfNBSfULU/6Qino+UP48f1q9HI1toiuvDm6BH4D/ABFZgJBBHUVra2FiitoU PB3zH/gR4oWzYVNZRj3/AEIbONBrKY4iVvNHsoG4fpVe8PnXZlQHE/zgfXqPzyKnjBTT5Lk45TyA c988/wDjtP0qITyxM/3bd97k9l6/zH6099BX5W5vpodBeKX0+4gPzbIeWzn5sdD+h/GuM610Wmzv NaarcP8AdcFgP+Anj+Vc6OBTm72ZnhYuDlF/1oFLRSVmdgoooA4opgFFFFIAooooA3NGh+16Te23 ckEfXt+opNJg36bdxSMYzM/lKD/eAziq+h3f2Wab+6yhj9Aef0ya0ddZPsCyW/BFxuYjs2Dz/KtV a1zz6nMqjh0bRm6MpF1Ojv5aGJkcntkgD9TWc6NG7IwwynB+orbuvKl0me+j4efYrr6MDz+fFUrl PPe2uh0mIV/ZxwfzGDUtaG9Od5OT9PmibxFGUv0c9ZIwT9RxWdF/q5v9wf8AoS1r6+3nbm7wTGP8 CoI/kayIv9VMf9kf+hCiW46DvSVxkaGSRUUZZiAPqava0+7UpFH3YwIx+A//AF0aKgN+sr/chUyN +A/xpWAl1Ca5lX93GBIw9SRwPxNCWg5S/eei/MdeIsWmQwjPmRuGkHoWBIH5AUW6i30qd2JElwpC D/ZB5NFnC19FcvK+1RIkkrnsMNmpLbZfXkssqslpFHtwP4V7D6mn5mbdk4vpq/8AL7y0ENp4Wc4+ abk/iQP5Vz1dFrF0xsGhICY2gqOxJyB+AA/OudpT7Dwt2nJ9WLSUtFQdQo6UUgFFABRRRQAUUUUA PhlMMySKMlTnB7j0rpdPuIZrKW1lUuioWXjl07fiOn4CuXq7pt99jnQuC0YbPB5X1x/UVcXZnPiK XPG63Nm3t4LTS7gu3n2cjBgy9dpwM/UVStY1tLv7JcNut5iHikHTPY/0NbNpHZ3UczQDdBN99M/L nvx2NUYrQRuYVzcW8b7gh4khOeoz1H860a2scManxKX9f8H8yjeHffalCf4vnH1Xn+Wazo/+PeY/ 7o/Wug1K3ZtQWZIiJEI4HSZO4+vUY9KyRYyiSW1AO4yooJHbDHP5VEk7nVRqR5PuJIEaDR5GUEy3 biJAOpA6/wCFOvo2aaOwt1LScNJju2MY+gH866GKwjjlhbqIE2Rr6ep+tVLuC3s1cmXyvPYl2HMj 5P3V9BVOGhzxxCc9N/6/JfiUJLMLp62tq4bdJieXovyj19BmrMM1rb6d+5jLqkg8rPHnP6/TP8qk msFd44Cwt7FF3GPdguepz7CsbUr5J5SLcFYlG1SeML6Adh/P9KH7pUF7XS/n/X9aEF5OZWCbt20l mb+856n6dh9Kq0UtZPU9GMVFWQUlFLSGAooHSigAooooAKKKKACiiigCezvJrKbzIWx6qejfWt0a vBeCMkxQTIekoOD9GHSuboqlJowqUITd+p30UiyoCGRjjnYcigiMSAkKHPAzjJrg4pZIH3wu0beq nFLJPLJKJHldpB0Yscj6HtWntTjeAd9JHfZrJvbnTrGXzGQS3B6Y+Zh+J6Vy8081wQZ5Xlx03nOK jwB2pOp2Kp4Gz96Rbub15t6rlVb7xLbmf6n09ulVKWis27noRioqyEopaSkMKKWkoAcOlFA6UUAJ RRRQAVnHUXdnNvbPLGpwXBrQIyCD3rKhN1pytGYPOiByGXrVxSZzV5yi1Z2XVpXLMN8Z7eSWOBmK NgJnk/5zUKanLICUs3YA4O1s4/SrVlNBNGWgQJz8y4AINZthex2ySo6uzFyRtGapJa6GE6slyXno 762RfS+Ets0sMTO6nBj7ioY9SmlXdHZuy9Mhv/rU7TopN9xcSIY/NOQp696q6ddtDbbBbyyDcTlR xT5VrZCdWfu80rXv07fLqXI76SSKVhbNvjYKUzz/ACqOPUppl3R2buvTIb/61W4EQIZFjKGX5mBz nNZem3bQWxQW8snzE5UcdqSSd7Iqc5wcVKe9+n/ANG0ujc+ZuiMZQ4IJzUMmpbpClrC05HUjpSXZ EenSyxoY3lwWB681ZsYlitIlQdVDE+pNKyWpalUk1T5ul2/yKjaq0Z2y2zo5PAJ4NSXN+8E/l/Zm YMcKd2N30496uSRRygCRFfHTcM4rP1Zik9mwUsQ5IUdTyKI8rdrCq+1pwcnPt0RZnuZIrZJfs7MS Msufu8UWd010jM0JjXsSc7utVbi9le3lU2cygqRuIOBx9Ks6Z/yD4fof5mhxtHYcKrnWtGWlu3/A LdJS0lZnYOFFA6UUCEooooGMlJETleoUkfrWXb6o0cWLtJCx5VgvWtWR1jjZ2OFUZNQ+fIPmkgKR 4JLbgdoxnkVcdtUc9VPmTjK3yv8AeU7NmhW5vJY2VZGBCAc9f/r03R5gDJEVcMzFwccYq8LhwVLw lEc4Bz0J6ZHampeBoZHKEMhxtznJ6D9eKptu+hjGEYuNpbX6fNklzMsEJdlZgOMKMmsvT71La28u SOUtuJ4Wr6XZZ4Q0e0SruB3Zx6UNeEGbbFuWLvuxnnH9DSWis0VUalJTjK1vL5kMF8THcTSCQxh8 Iu3kA1W069S1tzHJHKTuJ4WtCW6ePzMxZ8sAnDdc0Nd4yUTcvlmTO7HFP5ENNNPn1V+ndkFuzX8V 0khYIxwmRgio4buSxQQXcb4XhXXkEVd+0Ox2xxbmABb5sAZ7Ukl0YxEXjI39RnlR60r9LFcqSUlL VdbeZXW+mupVW0iIT+J5BwKh1G4H2yABHPkvljjr0PFXjcSCfyxATz1z2zjOPxpEumdV2xZkYnC7 uwOCSfrTWjvYUlzRcXPX07dhl7cqLHdtc+chCjHTI703SZQ9qItrBoxzkcck1I955a5aNgQwVxnp nv71LHMZJXTaNqgEMDnOaX2bWNFZ1VLm8rW/rsS0tJS1mdQo6UUDpRTEJRRRSGMlQSxujdGBHFRe VK6lJpEZCCDtXBapWjUkk5yRjrTWiQA8E+wNUmZyjd3sR+RK2xZZFZEIPC4LY6Zpi2jgqxddyljg Dg8kj8iTUoQZGEcc45NJtBU5jfPpmndmbhF6tfmRC0k2IpkT5Y9gIXnI5B/QUotG2yJvUKyBRxyC O5/M1IwB6xPyc9aCPvHy3/Oi7F7OHb8xj28rpJudA77egOABQ1qd8rI4HmIVwRwCepp6qM48t8Hj k0m0Y/1b/nRdhyRfT8/66gIZozujdMsAGDKcZAxkUx7RpXYzOH+TauMr+eDUm0AECJ/zoK5Cny34 PrRdjcItWa/MSKGVZUZ5Ebamw4Byfemx20saqVkTzF3fwnBBOcU/AwB5T/j70bBj/Vvz2zRcOWP9 NjDbSEhjIpkLhmOOOOgFPggEEkhDZVsbR/dHp+tKiBuGVhgY5PWnCCP0/WlfoOMFfmSJKKAMACip Nxw6UUDpRQISiiigYUUUUAFFJS0AJS0lLQAlFLRQAUlLRQAlFLRQAlLSUtABRRRQAoooHSimISii ikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBRRRRTEf//ZCmVuZHN0cmVhbQplbmRv YmoKMTUgMCBvYmoKPDwvUjEwCjEwIDAgUi9SMTEKMTEgMCBSL1I3CjcgMCBSL1I4CjggMCBSL1I5 CjkgMCBSPj4KZW5kb2JqCjEwIDAgb2JqCjw8L0Jhc2VGb250L1N5bWJvbC9UeXBlL0ZvbnQKL1N1 YnR5cGUvVHlwZTE+PgplbmRvYmoKMTEgMCBvYmoKPDwvQmFzZUZvbnQvVGltZXMtQm9sZC9UeXBl L0ZvbnQKL0VuY29kaW5nIDE2IDAgUi9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjE2IDAgb2JqCjw8 L1R5cGUvRW5jb2RpbmcvRGlmZmVyZW5jZXNbCjE0Ny9xdW90ZWRibGxlZnQvcXVvdGVkYmxyaWdo dF0+PgplbmRvYmoKNyAwIG9iago8PC9CYXNlRm9udC9IZWx2ZXRpY2EvVHlwZS9Gb250Ci9TdWJ0 eXBlL1R5cGUxPj4KZW5kb2JqCjggMCBvYmoKPDwvQmFzZUZvbnQvSGVsdmV0aWNhLUJvbGQvVHlw ZS9Gb250Ci9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjkgMCBvYmoKPDwvQmFzZUZvbnQvVGltZXMt Um9tYW4vVHlwZS9Gb250Ci9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjE3IDAgb2JqCjw8L1R5cGUv TWV0YWRhdGEKL1N1YnR5cGUvWE1ML0xlbmd0aCAxMzc3Pj5zdHJlYW0KPD94cGFja2V0IGJlZ2lu PSfvu78nIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQnPz4KPD9hZG9iZS14YXAtZmlsdGVy cyBlc2M9IkNSTEYiPz4KPHg6eG1wbWV0YSB4bWxuczp4PSdhZG9iZTpuczptZXRhLycgeDp4bXB0 az0nWE1QIHRvb2xraXQgMi45LjEtMTMsIGZyYW1ld29yayAxLjYnPgo8cmRmOlJERiB4bWxuczpy ZGY9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMnIHhtbG5zOmlY PSdodHRwOi8vbnMuYWRvYmUuY29tL2lYLzEuMC8nPgo8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91 dD0nMWNlOTFiNTQtNmM4MS0xMWRlLTAwMDAtMDlkZWUwMTc0NGU4JyB4bWxuczpwZGY9J2h0dHA6 Ly9ucy5hZG9iZS5jb20vcGRmLzEuMy8nIHBkZjpQcm9kdWNlcj0nR1BMIEdob3N0c2NyaXB0IDgu NjEnLz4KPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9JzFjZTkxYjU0LTZjODEtMTFkZS0wMDAw LTA5ZGVlMDE3NDRlOCcgeG1sbnM6eGFwPSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvJyB4 YXA6TW9kaWZ5RGF0ZT0nMjAwOS0wNy0wNlQxNDowNzowNSswMjowMCcgeGFwOkNyZWF0ZURhdGU9 JzIwMDktMDctMDZUMTQ6MDc6MDUrMDI6MDAnPjx4YXA6Q3JlYXRvclRvb2w+UERGQ3JlYXRvciBW ZXJzaW9uIDAuOS41PC94YXA6Q3JlYXRvclRvb2w+PC9yZGY6RGVzY3JpcHRpb24+CjxyZGY6RGVz Y3JpcHRpb24gcmRmOmFib3V0PScxY2U5MWI1NC02YzgxLTExZGUtMDAwMC0wOWRlZTAxNzQ0ZTgn IHhtbG5zOnhhcE1NPSdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vJyB4YXBNTTpEb2N1 bWVudElEPScxY2U5MWI1NC02YzgxLTExZGUtMDAwMC0wOWRlZTAxNzQ0ZTgnLz4KPHJkZjpEZXNj cmlwdGlvbiByZGY6YWJvdXQ9JzFjZTkxYjU0LTZjODEtMTFkZS0wMDAwLTA5ZGVlMDE3NDRlOCcg eG1sbnM6ZGM9J2h0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvJyBkYzpmb3JtYXQ9J2Fw cGxpY2F0aW9uL3BkZic+PGRjOnRpdGxlPjxyZGY6QWx0PjxyZGY6bGkgeG1sOmxhbmc9J3gtZGVm YXVsdCc+Q0ZQLUF1ZGl0b3J5LWV4dGVuc2lvbjwvcmRmOmxpPjwvcmRmOkFsdD48L2RjOnRpdGxl PjxkYzpjcmVhdG9yPjxyZGY6U2VxPjxyZGY6bGk+bWhlY2ttYW5uPC9yZGY6bGk+PC9yZGY6U2Vx PjwvZGM6Y3JlYXRvcj48L3JkZjpEZXNjcmlwdGlvbj4KPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSd3Jz8+CmVuZHN0 cmVhbQplbmRvYmoKMiAwIG9iago8PC9Qcm9kdWNlcihHUEwgR2hvc3RzY3JpcHQgOC42MSkKL0Ny ZWF0aW9uRGF0ZShEOjIwMDkwNzA2MTQwNzA1KzAyJzAwJykKL01vZERhdGUoRDoyMDA5MDcwNjE0 MDcwNSswMicwMCcpCi9UaXRsZShDRlAtQXVkaXRvcnktZXh0ZW5zaW9uKQovQ3JlYXRvcihQREZD cmVhdG9yIFZlcnNpb24gMC45LjUpCi9BdXRob3IobWhlY2ttYW5uKQovS2V5d29yZHMoKQovU3Vi amVjdCgpPj5lbmRvYmoKeHJlZgowIDE4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwNjI2NyAw MDAwMCBuIAowMDAwMDE2ODg0IDAwMDAwIG4gCjAwMDAwMDYxOTkgMDAwMDAgbiAKMDAwMDAwNjAy NSAwMDAwMCBuIAowMDAwMDAwMDE1IDAwMDAwIG4gCjAwMDAwMDYwMDUgMDAwMDAgbiAKMDAwMDAx NTIzMSAwMDAwMCBuIAowMDAwMDE1Mjk1IDAwMDAwIG4gCjAwMDAwMTUzNjQgMDAwMDAgbiAKMDAw MDAxNTAwNyAwMDAwMCBuIAowMDAwMDE1MDY5IDAwMDAwIG4gCjAwMDAwMTAwODAgMDAwMDAgbiAK MDAwMDAwNjM3NSAwMDAwMCBuIAowMDAwMDA2MzMyIDAwMDAwIG4gCjAwMDAwMTQ5MzcgMDAwMDAg biAKMDAwMDAxNTE1MSAwMDAwMCBuIAowMDAwMDE1NDMwIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1Np emUgMTggL1Jvb3QgMSAwIFIgL0luZm8gMiAwIFIKL0lEIFs8NDI3MDhCNUMzQUQxMkE5MDdDNjE0 QTk2MjZGNEY0MjA+PDQyNzA4QjVDM0FEMTJBOTA3QzYxNEE5NjI2RjRGNDIwPl0KPj4Kc3RhcnR4 cmVmCjE3MTE1CiUlRU9GCg== --=_mixed 00434BF9C12575EB_=--


This message came from the mail archive
http://www.auditory.org/postings/2009/
maintained by:
DAn Ellis <dpwe@ee.columbia.edu>
Electrical Engineering Dept., Columbia University