Re: multidimensional scaling of timbre (Guillaume Lemaitre )


Subject: Re: multidimensional scaling of timbre
From:    Guillaume Lemaitre  <Guillaume.Lemaitre@xxxxxxxx>
Date:    Thu, 23 Oct 2008 17:00:50 +0200
List-Archive:<http://lists.mcgill.ca/scripts/wa.exe?LIST=AUDITORY>

This is a multi-part message in MIME format. --------------050900010902010504030107 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: quoted-printable X-MIME-Autoconverted: from 8bit to quoted-printable by drizzle.cc.mcgill.ca id m9NF2gdt012202 Dear list The MDS techniques is made of several steps: 1. Collecting dissimilarity data (dissimilarity judgements, but not only) 2. Representing the data in a low-dimensional Euclidean or=20 semi-euclidean space 3. Interpreting the dimensions of the space in terms of psychological=20 dimensions (or auditory attributes). This is usually done by listening=20 to the sounds along the dimensions to get an idea of the attribute to=20 which the dimension might correspond 4. Correlating the dimensions with acoustical descriptors As far as I understand this technique, it is based on a fundamental=20 assumption: the dissimilarity can be represented in low-dimensional=20 Euclidean space (i.e. the dimension are continuous). This assumption=20 therefore requires that the listeners focus on a few continuous=20 auditory attributes. The most straightforward way to do that is to have=20 a set of sounds that are rather similar. Bear in mind that the first=20 studies used synthetic stimuli, build so as to vary along a few=20 continuous parameters. A consequence of this assumption is that the raw dissimilarity data must=20 fulfil some mathematical constraints to be represented in a low-D=20 Euclidean space. This can be checked prior to any MDS analysis: the data=20 have to follow the triangular inequality, and not the ultrametric=20 inequality (see Legendre and Legendre 1998). When the data follow also=20 the ultrametric inequality, they would not fit a low-D space, and=20 another technique (such as tree representation) is better suited. The results of such studies have therefore not to be interpreted as "the=20 timbre of all sounds is made out of 2 or 3 auditory attributes", but=20 rather as "in set of sounds varying along a few acoustic parameters, the=20 2 or 3 most salient auditory attributes are ...". Winsberg et al. (1989,=20 1993) have developed extended Euclidean representations that include=20 also specificities. Specificities are properties that are specific to=20 one sound (i.e. not shared by all the sounds, as continuous dimensions).=20 Such a representation has allowed to apply the MDS technique to sounds a=20 bit more complex than synthesized sounds (McAdams et al., 1995, Susini=20 et al., 1999, Susini et al., 2004, Lemaitre et al., 2007). However, as=20 emphasized by Susini et al. (1999), this technique cannot be applied to=20 sets of sounds that include sounds made by very different sources. For=20 such sets of sounds, free sorting tasks and tree representation are, to=20 my knowledge, the best suited techniques. Again, I think that the results of these studies cannot be summarized as=20 "the timbre is the combination of three attributes, related to the=20 spectral distribution of energy, the attack time, and the spectral=20 fluctuations". The fact that these studies have shown that these=20 attributes are consistently related to the psychological dimensions=20 highlighted by the restricted MDS studies tells us that these attributes=20 play an important role in the perception, not that the perception is=20 only based on these attributes. Best regards Guillaume Lemaitre ps: in response to Paul Iverson, Marozeau et al. (2003) have shown that,=20 when required to do so, listeners can ignore pitch when making timbre=20 judgements. P. Legendre and L. Legendre, Numerical ecology. Developments in=20 Environmental Modelling, Elsevier, second english ed., 1998. Lemaitre, G., Susini, P., Winsberg, S., Letinturier, B., & McAdams, S.=20 (2007). The sound quality of car horns: a psychoacoustical study of=20 timbre. Acta Acustica united with Acustica, 93(3), 457-468. 89-114. J. Marozeau, A. de Cheveign=E9, S. McAdams, and S. Winsberg, "The=20 dependency of timbre on fundamental frequency," Journal of the Acoustical Society of America,=20 vol. 114, no. 5, pp. 2946-- 2957, 2003. P. Susini, S. McAdams, and S. Winsberg, "A multidimensional technique=20 for sound quality assessment," Acustica united with Acta Acustica, vol. 85, pp. 650--656, 1999. P. Susini, S. McAdams, S. Winsberg, I. Perry, S. Vieillard, and X.=20 Rodet, "Characterizing the sound quality of air-conditioning noise," Applied Acoustics, vol. 65, no. 8,=20 pp. 763--790, 2004. S. Winsberg and J. D. Carroll, "A quasi non-metric method for=20 multidimensional scaling via an extended Euclidian model," Psychometrika, vol. 54, pp. 217--229, 1989. S. Winsberg and G. D. Soete, "A latent class approach to fitting the=20 weighted Euclidian model, CLASCAL," Psychometrika, vol. 58, no. 2, pp. 315--330, 1993. --=20 -------------------------------------------------------------------------= --- Guillaume Lemaitre / / Equipe Perception et Design Sonores / Sound Perception and Design Team STMS-IRCAM-CNRS UMR 9912 1, place Igor Stravinsky F-75004 Paris - FRANCE tel : (+33 1) 44.78.48.38 fax : (+33 1) 44.78.15.40 e-mail : lemaitre@xxxxxxxx --------------------------------------=20 -------------------------------------- --------------050900010902010504030107 Content-Type: multipart/related; boundary="------------010804030900070209010102" --------------010804030900070209010102 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <meta content="text/html;charset=ISO-8859-1" http-equiv="Content-Type"> </head> <body bgcolor="#ffffff" text="#000000"> Dear list<br> The MDS techniques is made of several steps:<br> 1. Collecting dissimilarity data (dissimilarity judgements, but not only)<br> 2. Representing the data in a low-dimensional Euclidean or semi-euclidean space<br> 3. Interpreting the dimensions of the space in terms of psychological dimensions (or auditory attributes). This is usually done by listening to the sounds along the dimensions to get an idea of the attribute to which the dimension might correspond<br> 4. Correlating the dimensions with acoustical descriptors<br> <br> As far as I understand this technique, it is based on a fundamental assumption: the dissimilarity can be represented in low-dimensional Euclidean space (i.e. the dimension are continuous). This assumption therefore requires that&nbsp; the listeners focus on a few continuous auditory attributes. The most straightforward way to do that is to have a set of sounds that are rather similar. Bear in mind that the first studies used synthetic stimuli, build so as to vary along a few continuous parameters. <br> A consequence of this assumption is that the raw dissimilarity data must fulfil some mathematical constraints to be represented in a low-D Euclidean space. This can be checked prior to any MDS analysis: the data have to follow the triangular inequality, and not the ultrametric inequality (see Legendre and Legendre 1998). When the data follow also the ultrametric inequality, they would not fit a low-D space, and another technique (such as tree representation) is better suited.<br> The results of such studies have therefore not to be interpreted as "the timbre of all sounds is made out of 2 or 3 auditory attributes", but rather as "in set of sounds varying along a few acoustic parameters, the 2 or 3 most salient auditory attributes are ...". Winsberg et al. (1989, 1993) have developed extended Euclidean representations that include also specificities. Specificities are properties that are specific to one sound (i.e. not shared by all the sounds, as continuous dimensions). Such a representation has allowed to apply the MDS technique to sounds a bit more complex than synthesized sounds (McAdams et al., 1995, Susini et al., 1999, Susini et al., 2004, Lemaitre et al., 2007). However, as emphasized by Susini et al. (1999), this technique cannot be applied to sets of sounds that include sounds made by very different sources. For such sets of sounds, free sorting tasks and tree representation are, to my knowledge, the best suited techniques. <br> <br> Again, I think that the results of these studies cannot be summarized as "the timbre is the combination of three attributes, related to the spectral distribution of energy, the attack time, and the spectral fluctuations". The fact that these studies have shown that these attributes are consistently related to the psychological dimensions highlighted by the restricted MDS studies tells us that these attributes play an important role in the perception, not that the perception is only based on these attributes. <br> <br> Best regards<br> Guillaume Lemaitre<br> ps: in response to Paul Iverson, Marozeau et al. (2003) have shown that, when required to do so, listeners can ignore pitch when making timbre judgements.<br> <br> <br> P. Legendre and L. Legendre, Numerical ecology. Developments in Environmental Modelling, Elsevier,<br> second english ed., 1998.<br> <br> Lemaitre, G., Susini, P., Winsberg, S., Letinturier, B., &amp;&nbsp; McAdams, S. (2007). The sound quality of car horns:&nbsp; a psychoacoustical study of timbre. <br> Acta Acustica&nbsp; united with Acustica, 93(3), 457-468. 89-114. <br> <br> J. Marozeau, A. de Cheveign&eacute;, S. McAdams, and S. Winsberg, &#8220;The dependency of timbre on<br> fundamental frequency,&#8221; Journal of the Acoustical Society of America, vol. 114, no. 5, pp. 2946&#8211;<br> 2957, 2003.<br> <br> P. Susini, S. McAdams, and S. Winsberg, &#8220;A multidimensional technique for sound quality assessment,&#8221;<br> Acustica united with Acta Acustica, vol. 85, pp. 650&#8211;656, 1999.<br> <br> P. Susini, S. McAdams, S. Winsberg, I. Perry, S. Vieillard, and X. Rodet, &#8220;Characterizing the sound<br> quality of air-conditioning noise,&#8221; Applied Acoustics, vol. 65, no. 8, pp. 763&#8211;790, 2004.<br> <br> S. Winsberg and J. D. Carroll, &#8220;A quasi non-metric method for multidimensional scaling via an<br> extended Euclidian model,&#8221; Psychometrika, vol. 54, pp. 217&#8211;229, 1989.<br> <br> S. Winsberg and G. D. Soete, &#8220;A latent class approach to fitting the weighted Euclidian model,<br> CLASCAL,&#8221; Psychometrika, vol. 58, no. 2, pp. 315&#8211;330, 1993.<br> <br> <div class="moz-signature">-- <br> <meta http-equiv="Content-Type" content="text/html; "> <meta http-equiv="Content-Style-Type" content="text/css"> <title></title> <meta name="Generator" content="Cocoa HTML Writer"> <meta name="CocoaVersion" content="824.42"> <style type="text/css"> p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} </style> <p class="p1">----------------------------------------------------------------------------<br> </p> <br> <img alt="Guillaume Lemaitre" src="cid:part1.09020407.04020505@xxxxxxxx" style="width: 253px; height: 41px;"><br> <p class="p1"><i><br> </i></p> <p class="p1">Equipe Perception et Design Sonores /</p> <p class="p1">Sound Perception and Design Team<br> </p> <p class="p1"><br> </p> <p class="p1">STMS-IRCAM-CNRS&nbsp;&nbsp;&nbsp;&nbsp; UMR 9912<br> </p> <p class="p1">1, place Igor Stravinsky F-75004 Paris - FRANCE</p> <p class="p1">tel<span class="Apple-converted-space">&nbsp; </span>: (+33 1) 44.78.48.38</p> <p class="p1">fax : (+33 1) 44.78.15.40</p> <p class="p1">e-mail<span class="Apple-converted-space">&nbsp; </span>: <a class="moz-txt-link-abbreviated" href="mailto:lemaitre@xxxxxxxx">lemaitre@xxxxxxxx</a></p> <p class="p1">--------------------------------------<span class="Apple-converted-space"> </span>--------------------------------------</p> </div> </body> </html> --------------010804030900070209010102 Content-Type: image/jpeg; x-mac-type="4A504547"; x-mac-creator="3842494D"; name="ImagesSignaure.jpg" Content-ID: <part1.09020407.04020505@xxxxxxxx> Content-Disposition: inline; filename="ImagesSignaure.jpg" Content-Transfer-Encoding: base64 /9j/4AAQSkZJRgABAgEBLAEsAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABABLAAA AAEAAQEsAAAAAQAB/+FIKmh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0 IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4KPHg6eG1wbWV0 YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iMy4xLjEtMTExIj4KICAgPHJk ZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50 YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAg ICAgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIj4KICAgICAg ICAgPGRjOmZvcm1hdD5pbWFnZS9qcGVnPC9kYzpmb3JtYXQ+CiAgICAgIDwvcmRmOkRlc2Ny aXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAg ICB4bWxuczp4YXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iCiAgICAgICAgICAg IHhtbG5zOnhhcEdJbWc9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9nL2ltZy8iPgog ICAgICAgICA8eGFwOkNyZWF0b3JUb29sPklsbHVzdHJhdG9yPC94YXA6Q3JlYXRvclRvb2w+ CiAgICAgICAgIDx4YXA6Q3JlYXRlRGF0ZT4yMDA4LTA4LTA0VDEwOjM4OjIyKzAyOjAwPC94 YXA6Q3JlYXRlRGF0ZT4KICAgICAgICAgPHhhcDpNb2RpZnlEYXRlPjIwMDgtMDgtMDRUMDg6 Mzg6MjRaPC94YXA6TW9kaWZ5RGF0ZT4KICAgICAgICAgPHhhcDpNZXRhZGF0YURhdGU+MjAw OC0wOC0wNFQxMDozODoyMiswMjowMDwveGFwOk1ldGFkYXRhRGF0ZT4KICAgICAgICAgPHhh cDpUaHVtYm5haWxzPgogICAgICAgICAgICA8cmRmOkFsdD4KICAgICAgICAgICAgICAgPHJk ZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDx4YXBH SW1nOndpZHRoPjI1NjwveGFwR0ltZzp3aWR0aD4KICAgICAgICAgICAgICAgICAgPHhhcEdJ bWc6aGVpZ2h0PjQ0PC94YXBHSW1nOmhlaWdodD4KICAgICAgICAgICAgICAgICAgPHhhcEdJ bWc6Zm9ybWF0PkpQRUc8L3hhcEdJbWc6Zm9ybWF0PgogICAgICAgICAgICAgICAgICA8eGFw R0ltZzppbWFnZT4vOWovNEFBUVNrWkpSZ0FCQWdFQkxBRXNBQUQvN1FBc1VHaHZkRzl6YUc5 d0lETXVNQUE0UWtsTkErMEFBQUFBQUJBQkxBQUFBQUVBJiN4QTtBUUVzQUFBQUFRQUIvK0lN V0VsRFExOVFVazlHU1V4RkFBRUJBQUFNU0V4cGJtOENFQUFBYlc1MGNsSkhRaUJZV1ZvZ0I4 NEFBZ0FKJiN4QTtBQVlBTVFBQVlXTnpjRTFUUmxRQUFBQUFTVVZESUhOU1IwSUFBQUFBQUFB QUFBQUFBQUFBQVBiV0FBRUFBQUFBMHkxSVVDQWdBQUFBJiN4QTtBQUFBQUFBQUFBQUFBQUFB QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQVJZM0J5ZEFBQUFW QUFBQUF6JiN4QTtaR1Z6WXdBQUFZUUFBQUJzZDNSd2RBQUFBZkFBQUFBVVltdHdkQUFBQWdR QUFBQVVjbGhaV2dBQUFoZ0FBQUFVWjFoWldnQUFBaXdBJiN4QTtBQUFVWWxoWldnQUFBa0FB QUFBVVpHMXVaQUFBQWxRQUFBQndaRzFrWkFBQUFzUUFBQUNJZG5WbFpBQUFBMHdBQUFDR2Rt bGxkd0FBJiN4QTtBOVFBQUFBa2JIVnRhUUFBQS9nQUFBQVViV1ZoY3dBQUJBd0FBQUFrZEdW amFBQUFCREFBQUFBTWNsUlNRd0FBQkR3QUFBZ01aMVJTJiN4QTtRd0FBQkR3QUFBZ01ZbFJT UXdBQUJEd0FBQWdNZEdWNGRBQUFBQUJEYjNCNWNtbG5hSFFnS0dNcElERTVPVGdnU0dWM2JH VjBkQzFRJiN4QTtZV05yWVhKa0lFTnZiWEJoYm5rQUFHUmxjMk1BQUFBQUFBQUFFbk5TUjBJ Z1NVVkROakU1TmpZdE1pNHhBQUFBQUFBQUFBQUFBQUFTJiN4QTtjMUpIUWlCSlJVTTJNVGsy TmkweUxqRUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB QUFBQUFBJiN4QTtBQUFBQUFBQUFBQUFBRmhaV2lBQUFBQUFBQUR6VVFBQkFBQUFBUmJNV0Zs YUlBQUFBQUFBQUFBQUFBQUFBQUFBQUFCWVdWb2dBQUFBJiN4QTtBQUFBYjZJQUFEajFBQUFE a0ZoWldpQUFBQUFBQUFCaW1RQUF0NFVBQUJqYVdGbGFJQUFBQUFBQUFDU2dBQUFQaEFBQXRz OWtaWE5qJiN4QTtBQUFBQUFBQUFCWkpSVU1nYUhSMGNEb3ZMM2QzZHk1cFpXTXVZMmdBQUFB QUFBQUFBQUFBQUJaSlJVTWdhSFIwY0RvdkwzZDNkeTVwJiN4QTtaV011WTJnQUFBQUFBQUFB QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQVpH VnpZd0FBJiN4QTtBQUFBQUFBdVNVVkRJRFl4T1RZMkxUSXVNU0JFWldaaGRXeDBJRkpIUWlC amIyeHZkWElnYzNCaFkyVWdMU0J6VWtkQ0FBQUFBQUFBJiN4QTtBQUFBQUFBdVNVVkRJRFl4 T1RZMkxUSXVNU0JFWldaaGRXeDBJRkpIUWlCamIyeHZkWElnYzNCaFkyVWdMU0J6VWtkQ0FB QUFBQUFBJiN4QTtBQUFBQUFBQUFBQUFBQUFBQUFBQUFHUmxjMk1BQUFBQUFBQUFMRkpsWm1W eVpXNWpaU0JXYVdWM2FXNW5JRU52Ym1ScGRHbHZiaUJwJiN4QTtiaUJKUlVNMk1UazJOaTB5 TGpFQUFBQUFBQUFBQUFBQUFDeFNaV1psY21WdVkyVWdWbWxsZDJsdVp5QkRiMjVrYVhScGIy NGdhVzRnJiN4QTtTVVZETmpFNU5qWXRNaTR4QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB QUFBQUFBQUIyYVdWM0FBQUFBQUFUcFA0QUZGOHVBQkRQJiN4QTtGQUFEN2N3QUJCTUxBQU5j bmdBQUFBRllXVm9nQUFBQUFBQk1DVllBVUFBQUFGY2Y1MjFsWVhNQUFBQUFBQUFBQVFBQUFB QUFBQUFBJiN4QTtBQUFBQUFBQUFBQUFBQUtQQUFBQUFuTnBaeUFBQUFBQVExSlVJR04xY25Z QUFBQUFBQUFFQUFBQUFBVUFDZ0FQQUJRQUdRQWVBQ01BJiN4QTtLQUF0QURJQU53QTdBRUFB UlFCS0FFOEFWQUJaQUY0QVl3Qm9BRzBBY2dCM0FId0FnUUNHQUlzQWtBQ1ZBSm9BbndDa0FL a0FyZ0N5JiN4QTtBTGNBdkFEQkFNWUF5d0RRQU5VQTJ3RGdBT1VBNndEd0FQWUErd0VCQVFj QkRRRVRBUmtCSHdFbEFTc0JNZ0U0QVQ0QlJRRk1BVklCJiN4QTtXUUZnQVdjQmJnRjFBWHdC Z3dHTEFaSUJtZ0doQWFrQnNRRzVBY0VCeVFIUkFka0I0UUhwQWZJQitnSURBZ3dDRkFJZEFp WUNMd0k0JiN4QTtBa0VDU3dKVUFsMENad0p4QW5vQ2hBS09BcGdDb2dLc0FyWUN3UUxMQXRV QzRBTHJBdlVEQUFNTEF4WURJUU10QXpnRFF3TlBBMW9EJiN4QTtaZ055QTM0RGlnT1dBNklE cmdPNkE4Y0Qwd1BnQSt3RCtRUUdCQk1FSUFRdEJEc0VTQVJWQkdNRWNRUitCSXdFbWdTb0JM WUV4QVRUJiN4QTtCT0VFOEFUK0JRMEZIQVVyQlRvRlNRVllCV2NGZHdXR0JaWUZwZ1cxQmNV RjFRWGxCZllHQmdZV0JpY0dOd1pJQmxrR2FnWjdCb3dHJiN4QTtuUWF2QnNBRzBRYmpCdlVI QndjWkJ5c0hQUWRQQjJFSGRBZUdCNWtIckFlL0I5SUg1UWY0Q0FzSUh3Z3lDRVlJV2dodUNJ SUlsZ2lxJiN4QTtDTDRJMGdqbkNQc0pFQWtsQ1RvSlR3bGtDWGtKandta0Nib0p6d25sQ2Zz S0VRb25DajBLVkFwcUNvRUttQXF1Q3NVSzNBcnpDd3NMJiN4QTtJZ3M1QzFFTGFRdUFDNWdM c0F2SUMrRUwrUXdTRENvTVF3eGNESFVNamd5bkRNQU0yUXp6RFEwTkpnMUFEVm9OZEEyT0Rh a053dzNlJiN4QTtEZmdPRXc0dURra09aQTUvRHBzT3RnN1NEdTRQQ1E4bEQwRVBYZzk2RDVZ UHN3L1BEK3dRQ1JBbUVFTVFZUkIrRUpzUXVSRFhFUFVSJiN4QTtFeEV4RVU4UmJSR01FYW9S eVJIb0VnY1NKaEpGRW1RU2hCS2pFc01TNHhNREV5TVRReE5qRTRNVHBCUEZFK1VVQmhRbkZF a1VhaFNMJiN4QTtGSzBVemhUd0ZSSVZOQlZXRlhnVm14VzlGZUFXQXhZbUZra1diQmFQRnJJ VzFoYjZGeDBYUVJkbEY0a1hyaGZTRi9jWUd4aEFHR1VZJiN4QTtpaGl2R05VWStoa2dHVVVa YXhtUkdiY1ozUm9FR2lvYVVScDNHcDRheFJyc0d4UWJPeHRqRzRvYnNodmFIQUljS2h4U0hI c2NveHpNJiN4QTtIUFVkSGgxSEhYQWRtUjNESGV3ZUZoNUFIbW9lbEI2K0h1a2ZFeDgrSDJr ZmxCKy9IK29nRlNCQklHd2dtQ0RFSVBBaEhDRklJWFVoJiN4QTtvU0hPSWZzaUp5SlZJb0lp cnlMZEl3b2pPQ05tSTVRandpUHdKQjhrVFNSOEpLc2syaVVKSlRnbGFDV1hKY2NsOXlZbkps Y21oeWEzJiN4QTtKdWduR0NkSkozb25xeWZjS0Ewb1B5aHhLS0lvMUNrR0tUZ3BheW1kS2RB cUFpbzFLbWdxbXlyUEt3SXJOaXRwSzUwcjBTd0ZMRGtzJiN4QTtiaXlpTE5jdERDMUJMWFl0 cXkzaExoWXVUQzZDTHJjdTdpOGtMMW92a1MvSEwvNHdOVEJzTUtRdzJ6RVNNVW94Z2pHNk1m SXlLakpqJiN4QTtNcHN5MURNTk0wWXpmek80TS9FMEt6UmxOSjQwMkRVVE5VMDFoelhDTmYw Mk56WnlOcTQyNlRja04yQTNuRGZYT0JRNFVEaU1PTWc1JiN4QTtCVGxDT1g4NXZEbjVPalk2 ZERxeU91ODdMVHRyTzZvNzZEd25QR1U4cER6alBTSTlZVDJoUGVBK0lENWdQcUErNEQ4aFAy RS9vai9pJiN4QTtRQ05BWkVDbVFPZEJLVUZxUWF4QjdrSXdRbkpDdFVMM1F6cERmVVBBUkFO RVIwU0tSTTVGRWtWVlJacEYza1lpUm1kR3EwYndSelZIJiN4QTtlMGZBU0FWSVMwaVJTTmRK SFVsalNhbEo4RW8zU24xS3hFc01TMU5MbWt2aVRDcE1ja3k2VFFKTlNrMlRUZHhPSlU1dVRy ZFBBRTlKJiN4QTtUNU5QM1ZBblVIRlF1MUVHVVZCUm0xSG1VakZTZkZMSFV4TlRYMU9xVS9a VVFsU1BWTnRWS0ZWMVZjSldEMVpjVnFsVzkxZEVWNUpYJiN4QTs0Rmd2V0gxWXkxa2FXV2xa dUZvSFdsWmFwbHIxVzBWYmxWdmxYRFZjaGx6V1hTZGRlRjNKWGhwZWJGNjlYdzlmWVYrellB VmdWMkNxJiN4QTtZUHhoVDJHaVlmVmlTV0tjWXZCalEyT1hZK3RrUUdTVVpPbGxQV1dTWmVk bVBXYVNadWhuUFdlVForbG9QMmlXYU94cFEybWFhZkZxJiN4QTtTR3FmYXZkclQydW5hLzlz VjJ5dmJRaHRZRzI1YmhKdWEyN0VieDV2ZUcvUmNDdHdobkRnY1RweGxYSHdja3R5cG5NQmMx MXp1SFFVJiN4QTtkSEIwekhVb2RZVjE0WFkrZHB0MitIZFdkN040RVhodWVNeDVLbm1KZWVk NlJucWxld1I3WTN2Q2ZDRjhnWHpoZlVGOW9YNEJmbUorJiN4QTt3bjhqZjRSLzVZQkhnS2lC Q29GcmdjMkNNSUtTZ3ZTRFY0TzZoQjJFZ0lUamhVZUZxNFlPaG5LRzE0YzdoNStJQklocGlN NkpNNG1aJiN4QTtpZjZLWklyS2l6Q0xsb3Y4akdPTXlvMHhqWmlOLzQ1bWpzNlBObytla0Fh UWJwRFdrVCtScUpJUmtucVM0NU5OazdhVUlKU0tsUFNWJiN4QTtYNVhKbGpTV241Y0tsM1dY NEpoTW1MaVpKSm1RbWZ5YWFKclZtMEticjV3Y25JbWM5NTFrbmRLZVFKNnVueDJmaTUvNm9H bWcyS0ZIJiN4QTtvYmFpSnFLV293YWpkcVBtcEZha3g2VTRwYW1tR3FhTHB2Mm5icWZncUZL b3hLazNxYW1xSEtxUHF3S3JkYXZwckZ5czBLMUVyYml1JiN4QTtMYTZocnhhdmk3QUFzSFd3 NnJGZ3NkYXlTN0xDc3ppenJyUWx0SnkxRTdXS3RnRzJlYmJ3dDJpMzRMaFp1Tkc1U3JuQ3Vq dTZ0YnN1JiN4QTt1NmU4SWJ5YnZSVzlqNzRLdm9TKy83OTZ2L1hBY01Ec3dXZkI0OEpmd3R2 RFdNUFV4RkhFenNWTHhjakdSc2JEeDBISHY4Zzl5THpKJiN4QTtPc201eWpqS3Q4czJ5N2JN TmN5MXpUWE50YzQyenJiUE44KzQwRG5RdXRFODBiN1NQOUxCMDBUVHh0UkoxTXZWVHRYUjFs WFcyTmRjJiN4QTsxK0RZWk5qbzJXelo4ZHAyMnZ2YmdOd0YzSXJkRU4yVzNoemVvdDhwMzYv Z051Qzk0VVRoek9KVDR0dmpZK1ByNUhQay9PV0U1ZzNtJiN4QTtsdWNmNTZub011aTg2VWJw ME9wYjZ1WHJjT3Y3N0lidEVlMmM3aWp1dE85QTc4endXUERsOFhMeC8vS004eG56cC9RMDlN TDFVUFhlJiN4QTs5bTMyKy9lSytCbjRxUGs0K2NmNlYvcm4rM2Y4Qi95WS9Tbjl1djVML3R6 L2JmLy8vKzRBRGtGa2IySmxBR1RBQUFBQUFmL2JBSVFBJiN4QTtCZ1FFQkFVRUJnVUZCZ2tH QlFZSkN3Z0dCZ2dMREFvS0N3b0tEQkFNREF3TURBd1FEQTRQRUE4T0RCTVRGQlFURXh3Ykd4 c2NIeDhmJiN4QTtIeDhmSHg4Zkh3RUhCd2NOREEwWUVCQVlHaFVSRlJvZkh4OGZIeDhmSHg4 Zkh4OGZIeDhmSHg4Zkh4OGZIeDhmSHg4Zkh4OGZIeDhmJiN4QTtIeDhmSHg4Zkh4OGZIeDhm SHg4Zi84QUFFUWdBTEFFQUF3RVJBQUlSQVFNUkFmL0VBYUlBQUFBSEFRRUJBUUVBQUFBQUFB QUFBQVFGJiN4QTtBd0lHQVFBSENBa0tDd0VBQWdJREFRRUJBUUVBQUFBQUFBQUFBUUFDQXdR RkJnY0lDUW9MRUFBQ0FRTURBZ1FDQmdjREJBSUdBbk1CJiN4QTtBZ01SQkFBRklSSXhRVkVH RTJFaWNZRVVNcEdoQnhXeFFpUEJVdEhoTXhaaThDUnlndkVsUXpSVGtxS3lZM1BDTlVRbms2 T3pOaGRVJiN4QTtaSFREMHVJSUpvTUpDaGdaaEpSRlJxUzBWdE5WS0JyeTQvUEUxT1QwWlhX RmxhVzF4ZFhsOVdaMmhwYW10c2JXNXZZM1IxZG5kNGVYJiN4QTtwN2ZIMStmM09FaFlhSGlJ bUtpNHlOam8rQ2s1U1ZscGVZbVpxYm5KMmVuNUtqcEtXbXA2aXBxcXVzcmE2dm9SQUFJQ0FR SURCUVVFJiN4QTtCUVlFQ0FNRGJRRUFBaEVEQkNFU01VRUZVUk5oSWdaeGdaRXlvYkh3Rk1I UjRTTkNGVkppY3ZFekpEUkRnaGFTVXlXaVk3TENCM1BTJiN4QTtOZUpFZ3hkVWt3Z0pDaGda SmpaRkdpZGtkRlUzOHFPend5Z3AwK1B6aEpTa3RNVFU1UFJsZFlXVnBiWEYxZVgxUmxabWRv YVdwcmJHJiN4QTsxdWIyUjFkbmQ0ZVhwN2ZIMStmM09FaFlhSGlJbUtpNHlOam8rRGxKV1ds NWlabXB1Y25aNmZrcU9rcGFhbnFLbXFxNnl0cnErdi9hJiN4QTtBQXdEQVFBQ0VRTVJBRDhB OVU0cTdGWFlxN0ZYZ3gvT1h5djVDMER6SnJkbjVZa2h0RzgrWHVqNnhIRGVQTEpOY0dQMWJq VVVFeTBEJiN4QTtPc1cxdUNxLzVZeFZHK1p2K2NsWnRGdHJKVjhqYXpMcTg5dE5xMTdwa3FH RjdQU0lycTR0dnJWelJKSGplbHVzakl5QkZELzNuaXEzJiN4QTs1cS81eWgwSFQ0TlBieTNv Vjc1bm51ZE5oMXkvanRXajRXR255QnZWYTZlSDYwWTVvQ0Y5UkdVS09XN2p1cTM1dS81eVJt MG5XZEIwJiN4QTszUXZLRjc1aGs4eGFIQnIybnhRUzhicmpjK295d3ZieFJYSDJVaTVPeXMx UEEwcmlxdCtYL3dEemtoYWVjUE5IbC9SaDVYMUxUTFR6JiN4QTtGYXp2WmF0YzhmUWt2TE5H a3VvWVRRTE5ER3FFZXNyY3VWRmFOZW9WZXlZcXRra2pqamFTUmdrYUFzN3NRQUFPcEpPSktZ eEpORG1nJiN4QTt0Tzh3YURxY2trV202bGEzMGtXOHFXMDBjcktPbnhCR2FtUWprakxrUVhJ ejZMUGhBT1NFb0E4dUtKSDNvL0p1TWhJdFkwbWI2dDZOJiN4QTs3YnlmWEM2MmZDVkc5WXhW OVFSMFB4OE9KNWNlbVJFNG10K2JmTFM1WThWeGtPQ3VMWTdYeXZ1dnBhcmFYbG5lMjYzTm5Q SGMyN2xnJiN4QTtrMExySWhLc1ZZQmxKR3pBZysrR01nUllZWmNVOGN1R1lNWmR4Mkt0aGEz WXE3RlhZcXBYVjNhMmR0SmMzY3lXOXRDT1VzOHJCRVJSJiN4QTszWm1JQUh6d0VnQ3l6eDQ1 VGtJeEJsSThnTnlxS3lzb1pTR1ZoVldHNElQY1lXSkZONG9kaXJzVlV2cmRwOWIrcCt0SDli TWZyQzM1JiN4QTtEMVBUcng1OEs4dVBMYXVEaUYxMVorRkxoNDZQRGRYMHZ1dnZWY0xCMkt1 eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjgxLzRUODFmOVdhJiN4QTsrLzhBSngvcGIvZWFiL2pu Zjh0bjJmOEFlZjhBNHQreDc0cXlmOHdkWTh3K1V2enYvd0FXMm5sVFdQTWxuTDVTYlRMWWFU YlBPbjEzJiN4QTs2KzF3c2MwaWh2U1RpbzVOeFlpdXl0aXJBL3padlB6Wjh4Nm9aTlQwanpQ WmFKcW5sZjFkTjBYeXVMdWVKTlF1ZzNHMzFrdEZDci90JiN4QTtMT2dUa3E4UVAyaVZXUWVV UEszbWVEODN2eXZ2NTlJdllySFQvSTFuWlg5Mjl2S3NVRjBrRndHZ21rSzhZNVFXQUtNUWQ4 VlFuNVYrJiN4QTtVL05WbC95bzM2N28xOWJmb2ovRlg2VjlhMm1qK3EvV2ZVOUQ2eHlVZWw2 dGZnNTA1ZHNWZlNtS3NIODF3SnIzbm5TUEs5NGE2UEhhJiN4QTtUYXJlMnBKQ1hUUnlMRkRF OVB0S2pOeks5RDN6RHpEanlDQittcjk3MFhaMHpwdEZrMU1QNzB6R09KL20yQ1pFZVpHMTlF dTFuempwJiN4QTtPbDZiNWwvUk9pU2FQcldqV1FFVnhKYld5RC9TWlBTdCtIcHZKVU5JQXdW aFRiY1pDZWVNUkxoand5aU80ZGVUbDZYc3ZMbXlZUEZ5JiN4QTtqTGl5ejVDVXo5SXVWMkIw MnNJN3pONW8xalNOVXM3UVhRcFlhSmZhcHE0S0lmVmFCRWpoUDJmaC9lbGo4Tks5TW5selNp UUw1UkpMJiN4QTtqYURzL0ZueHlsdy9Ybng0NGJuYmlKTXV1L3BybXg2MnVwTENmUzdtY1Jv L2x6eXBQcXN3aWlTSkJkMzFDMUk0MVJGcjZUOUYvWGxBJiN4QTtORUUvdzQ3K0pkcGt4akpI SkdOMW4xY2NZc2tuZ2g1bXoxSFZHK1dibldFMHpUdkt1bDNpNlRGbzJsVzk3cjJxTkdrMGlT M1NtUllvJiN4QTswa3FnT3p1ek1EOHNuaU1xRUltdUdJSlB2Y2ZYNDhSeVQxT1dQaUhMbGxI SEN5QVJFMXhFamZ1QUFwWDhtK2F2TTJwWFBsQzJ1N3d5JiN4QTt5WHRoZTZscTFZNGxNc1Bx TEhhVjRxT0ZPWUo0VXFSaHdacHlNQVR6QkovUTE5cWRuYWZGSFVTakdoREpDRU41YkdybjEz NWRiVVpmJiN4QTtOL215NnNJbTAyOFFYT3FlWnBkUDB4M2lSNDEwKzM1QitRQUJaZjNMRW12 TGZZakFjMHlOanpuUTl6WkhzelN3bWZFaWVISHBoT2U1JiN4QTt2eEpWWHUrb2VXM0pRdk5a ODkyOXA1d1llWUZOcjVacTl0ZW0xZzlhZWI2c3N4dDNYajZTeHF6Y2FoZVJyMTJ5TXA1QUor cmFIa083JiN4QTtrMll0TG9wVDAzN24xYWpuSGpsVVJ4bVBFT3BKRy9PdHVTL3pINTk4eVQz ODJrNlJKTmE2blkyVnZLMEZyWk5lRzR2N21NU3JBenNyJiN4QTt4d3dvcFhtekVINHRqdGh5 NmlaUERIWWdkMTJUMDhnalE5amFlTUJseWlNc2M1eUZ5bndjTUltdUtyQmxJNzBCWTIzNXA1 K1piWE56JiN4QTs1TXRkTHVGVkx6Vzd1dzArVkVQd2hwcGthVUtUMjRvMzBaZHFyT01SUE9S QWRiMkFJdzFjc2tkNFlZWkpqNFJOZmVGYjh3Zk5zdWlmJiN4QTtvdlRyV1ZyYTYxYVYxK3R4 MjczYlFRUUtHbGRJSTFjdTVMS2kxRkFXcWRoaDFPYmdvRG5MNHRmWW5abzFIaVpKRGlqakE5 UEVJOFVwJiN4QTtjZ1pFaWh6SjY3VUVoczlkL01HN3VmTHVrRzZObmRYNzZqTmNYVnhheHJP Mm53Y1Z0NVpZQ0FJNVc5UUVLS0FIN1FwVUdtT1RLVEdOJiN4QTswVGZUcDAyNzNaNWRIb1lS elplSGpqQVl3QUpIaDhTWDFBUzZ4RmM5OXVSNm9XUHpKNTlUeS9KcTc2eEhNbG5ySDZNc29o YlFodFFqJiN4QTsrdkMyTHpzQlJDVkpvSWd2MmZmSWpMazRlSytVcTVjOTYvRk4wdEJvam5H SVl5T1BEeHk5VXYzWjhQaXFQZjhBNTE4MDA4dythUE1GJiN4QTszWitadFIwelVCcEdrZVd4 TkFzeXhSVFRYVjVCSHlrWDk4SFJJdzVXTWZDU1RYY1pabHl5SWtRZUdNZnRMaDZIcy9CQ2VE SGtoNHVYJiN4QTtQUnF5QkNFanQ5TkVtcmx6MkhSS3A5YjFsN0R6WnFWMWRMQnFHaTZKWTI2 MzBVRUhxL1dwWVByVndvY3BYaTdzaThlZ3JVQUhLemtsJiN4QTtVeVR2R0krZFdYTmhwTUlu cDhjWTNETG55SGhNcFZ3aVhCRTFmTUN6Zk05ZG1yUWVkdEt2L0xIa3pTOWFLeVhGakxkMzl6 UGJ3U05iJiN4QTt4VWpDaEY0cVdLdWpoUzUzTC9GV2dvSStKRXh4aVhTenN1WDhubWhuMWVU RnRISUl4QWxJY1I5WFBmYXdSZGNoSGFyVmRDODcrYTlkJiN4QTsxYXhtMHFlYTRzMnZ4YlQy ZjFFcmIvVUl5VWt1cHJ4a1ZmVmZqelJJMnAwV2h3NDg4NXlIRHl2dTZkOTk3RFdkazZiVFlw REtJeGw0JiN4QTtmRUplSjZ1TTdpRVlYZkNPUk1oZlczcXViSjR0Mkt1eFYyS3V4Vjh3MmY4 QXprMTV4dmJ1R3pzOWI4blhOM2N1c1Z2YncyWG1lU1NTJiN4QTtSenhWRVJiTXN6TVRRQVlx b3QvemxONXFoWDFydld2S0F0djd5UDZwYmExYzNFMFM3TVlZU3NLckp5VmtTTzZrZ0pJNUVp TmxrWlY3JiN4QTtUNVg4K2FqcTM1UlA1eWFmVDcyL1d6djdsSmJCTHBMRjN0SG1WQXFYYXcz TlAzUUQ4Z042MDJvY3J5ek1ZRWpvQzVmWituam0xR1BIJiN4QTtMNlp6akUxem9rQlYxTHpv dmtsWXJYelhlTmZKZHpUUFk2aWlRUnlMYVJtRUUzTVlhRVBKRzl3UlMzallzaTh1TmVXVVR6 K0Z0TTNmJiN4QTtYYmx0ejVkL1RvN2JCMlYvS0Z5MHNlQXhqSGlqY2lPTThYMEdwVkVpUCtV a0FKR3VLcVEycS9teERGcVQ2VHAyazNrK29SM0VhMWNXJiN4QTt3aWVBYW91bXpPaE55alZN dkpJK1FIeFVaaHdxY2pQV0MrRUEzZmwvTzRlLzhlNXUwL3MyVGo4WEprZ0lHSi9uMkplRjRz UWZRZjRhJiN4QTtNcXZhd1BWUVZOWC9BRGg4dmFUNnh2YkcvalZMcTd0TGQyUzNSYmhyRGtM bDRHa21SV1JHVUtPVkdkbUNvR2JrRk05YkdQTUhtZTdlJiN4QTt1Zlg4ZEdHbTlsOCtldUNl TSttRWo5UjRlT3VBU3FKM1BQYXhFQW1SQW9tZDVtUE51eFYyS3V4VkpmTVBsUFR0Y2UydUpa WjdQVUxJJiN4QTtzYlBVYk9UMHJpTU9LT29haktWWWRWWlNNcXk0Uk9qeUk2aDJHaDdTeWFj U2lCR2NKL1ZHUXVKcmw4UjNoTFIrV3VpdnBtcldONWRYJiN4QTt0OUpyWG8vWHI2NGxVM0JO c2F3RldSRVZmVElxdnc1WCtWalJCSlBGK2h5LzVlekRKam5DTUlERmZERUQwK3I2cnNrbSt1 NmpMK1Z1JiN4QTtqVGpVV3VkUTFHNXVkVnMxc0x5N21tUjVURXNuT3ExajRxVDlrZ0x4cDJy VWtIU1JOMlR1S2JJKzBPV1BCd3d4eGpqbnh4QWlhdXE3JiN4QTs5Ky9uZm5XeU8xUHlGbytv RFdoTE5jSU5jaHQ3VzU5TmtIcHcydGVLUTFROFEzSThxMXI3WktlbmpMaTUrcXZzY2JUOXM1 Y1hoVUkvJiN4QTt1WlNrTHZjeTZ5MzZkT1N6Vi95OTBiVTlTdWI1cmk3dGZyMENXMm9XMXJL STRibU9NRVIrcXZFazhRMU5pQVJzYWpHZW1qSWs3aStmJiN4QTtteTAzYmViRGpqQUNFdUNS bEV5Rm1KUE90K3Y5aXgveTUwZW1sbTN2TDJ6bDBxeFhURW10cGxqa210RkMvdTVtQ2R5bktx Y1RYQitWJiN4QTtqdFJJb1Y4R1E3Y3kvdk9LTUpESlB4S2tMRVpiN3gzODYzc0t1ay9sL29t bHBvVWR0Sk9ZL0x4dW1zVWRrSVpyemtIYVdpRGtWOVJ1JiN4QTtOS2RlK0dHbWpIaHIrRy90 WWFudHJObU9VeUViejhQRnovZ3FxMzhoZk5kYytSTkl1TkcxalNaSnJqNnZybDI5N2V1R1Qx T2JzakZGJiN4QTtQQ2dTa1FYY0U4ZS9mQ2RQRXhNZjV4dEdQdGpMSExqeWdSNHNNQkdQT3FB Ty9QbnZmdjZMN3Z5Wlp6YTdKck50Zlh1bjNOeUloZlIyJiN4QTtrcXBGYytpS1IrcXJJNXFx L0RWU3UyTXNBTXVJRWozZFdPTHRXY2NJd3lqQ2NZM3c4UXN4dm5XNDkrOXFubW55bmJlWWtz Uk5lM1ZpJiN4QTsrbjNBdTdhV3phTkhFb1ZrQlBxUnlqWU9lMkhOaEU2M0lydVlkbmRwUzBw bFVZVEU0OEpFcjVjK2hIY2c1L0lOdGNXOXFKOVkxT1hVJiN4QTtMR2FTYXoxZHBZaGR4Q1pB a2tha1JDUDAyQzdnb2NpZE1DQlpsWTY5WEloMnpLTXBjT1BFSVRBRW9VZUUwYkIrcTdIZmFQ c3ZLOXBiJiN4QTtheEJxN1hOemMzc0ZrZFBWcDNWd1kybEVyTzFGQjVzeWlwclNnNlpPT0VD WEZadXFjWEwyaE9lSTR1R01ZU254N0RyVlZ6NWZpMExCJiN4QTs1RTBpSFJ0SjBsWnJocmJT THhOUWhabVRuSk1ranpEMVNFQUk5U1FzZUlHUkduaUlpUDhBTk50OCsyTXNzdVRMVWVMTERn UE9nQ0JIJiN4QTtiZnVGYjJnTlUvS3J5L3FLNm5ETGRYMFZscXNyM1Z6WVJUS0lCY3lVNXpx aFJqekpIS2pFclhjQ3RNaFBSeGxlNW85UE55ZFA3Ulo4JiN4QTtYQVJHQm5qQWlKR1BxNFJ5 amQ4dW0xR3RyUjl6NUMwUzUwdlhOTm1lZG9QTUU1dUwxdWFoMVlxaXFzUkNpaXA2UTRnZys5 Y21kUEVpJiN4QTtRL25PTkR0bk5ESml5RGh2REhoanQ3K2UvTTN2eVZkUDhuMlZwcjZhODkz ZFhtcEpZTHBucTNEUmtHRlpQVjVFSkdueHMzVTlQYkRIJiN4QTtBQkxpc2sxVFhuN1VuUEI0 QWpHT1B4T1AwM3pxdXBPMWYyck5EOGxXZWkzbnEyRi9mSllxOGtrV2tHVlRaeHRNU3pjRTRj NmNtSkFMJiN4QTtrQTRNZUFRT3hOZDNSbHErMXA2aUZUaERqb0F6cjFtdVZtNjZkekljdmRX N0ZYWXE3RlhZcThwdmYrY2Q5RHZGdWtsODErWmhIZnhlJiN4QTtocUNwZnhxMTFIUmw0M2tn ZzlXNitCeWdNN1BSS0lLSUF1S3Evd0R5b2lQL0FLbi9BTTYvOXh0LytxZUtzd3NQSjl2YStU cFBLMCtwJiN4QTthaHFWdk5CY1cwdW8zOC8xaStkTGt2eUxUT3Z4RlJKeFNxN0FBZHNqT0Fs RWc5Vy9UYWlXSExISkg2b1NFaGZLd2JRaC9MK0Y3djY1JiN4QTtMcmVxUGRNOGpYRTZ5UVF2 TEhNdHNyd2xvSUlqR2xMR1BlTGczMnZpM3lqOHZ2ZkZLL2g1ZVhsMGRuL0xSRWVBWXNYRFFv VklnRWNkJiN4QTtTOVVqWi9lUytyaWp5MjJTUzI4citTOVY4eFhUV09vNmhGcXlyY0lIRVhw eGhyZldmMGhNOER6MjNwU21HOVlSbmlXQVdnTysrVkREJiN4QTtqbEkwVHhiL0FPNnZxT2hk aGs3UTFlSFR4RTRZemk5UFd6NnNIaHhFaEdmRkhpeCtyZmhON2p1VHpVL3k4MG0rUzBaTHk4 c3J5eG52JiN4QTs3aTF2N1dSRW5qT3FOSTl5aWxrZEFENnZ3bmp6V2dvMWFrM1QwMFRXNUJG Ny93QmJtNjdUOXQ1Y1psY1lUaE9PT0pqSUhoUGhBQ0I1JiN4QTtnL3c3aStFMmJGTXB6SWRN Z2YwNXBmNmQvUVByL3dDNVg2cjllK3JjWC8zbjlUMHVmT25EN2UxT1ZmYkk4WTR1SHJ6Y244 bms4SHg2JiN4QTsvZDhYQmUzMVZkVno1ZVZJN0pPTTdGV0JhKzEzcnY1a1IrVTV0UXU5UDBp MjBjYW84ZGhPOXBOZFRTM0xRVU54RVZtVklGakJLeHN0JiN4QTtUSXRUMEdLc1YxVFd2T25s ZnpINTRmUkw1THpTUEsyaDZkcUVsbnJNdDNlU09zYTNzMGlReWVxT0VrcXhFTksvTDdLVkI3 S28zVS96JiN4QTtpMUN6MSswUzJsczlSMG0vbWt0RmlndEwwUGF6clp5M1NDYS9MTlp5T0do NFBBdkYxclhmaWNWVk5BOCsvbU5yZG41WHRJVTBpRFcvJiN4QTtNV2xTZVlHbGVHNmExaHNr UzJFY0FVVEs3elNTWFc3OHFJdjdMZFNxeFM4L09uekpydWk2TzlwYnpSMzl2cHRsNWcxQ3kw MjAxS2MzJiN4QTswc3J5K25wOGN0bUpEYW8zb1ZMeXZSalJTQ25QRlhwM21Qelg1aWJ6RnBI bDN5NUhhMjk5cUZqYzZyY1hHcXh5bU5JTFpvWS9SRWNUJiN4QTt4TjZydmNDcDVmQUFUeGJw aXJ5N3l4K2MvbWUwOG42SFoyc1UycjZwWjZEYTZuZnROWjZqcVZ4ZnkzRFNCTGRaclVPdHU3 TEFmMzA1JiN4QTtJSkkyMlloVjZYNXU4NWVZckR6UDVYMHZTWXJXSzAxZTF2Ny9BRktTL2ps YWFLR3dGczVXTkkzai9lTXM3TFJ1aG9leFZsV0UyUDUrJiN4QTthOCtrSFdKTkhOeFozMWts ellCYkhVTFNHMG51Ym1DM3RZTHE5dVU5QzRXUVhRWXl3VUE0dFFFRld4Vk90ZXVmelJnODgr VXRPVFZkJiN4QTtOR28zbHJyY2tnUzN1NDlQWklWc1RGNnR0OVpaNUpFZDNDdjZnb0dKQTZn cXBNLzUrNnplMkZqY2FQcGZPNi9RdHJyTjNZclk2aHFEJiN4QTtYRTEwWkFMT0NTelVwYmYz RFVtbnFDU1BoMlloVk5IL0FEUjg2UzZwZndXdHJwOFZ0SnIwWGxyUjF1WTUxbVc0bHRJNzB6 M2RKQU9NJiN4QTtjUmNlbW9CWjZDcTAzVldhbHF2NW9Xbm43VXJhMjFMVHBiaXg4c1c5L2RS VFEzWXNIbFcrdlFERGFpNExSUEpFaXE4aGthbkViTUtVJiN4QTtWVUxYODg5WDFQVTlQR2w2 VEpKYXNtalBmV01kamYzY3pEVjRJcm1SNDd1QmZxc0l0WXJsV0lscVpLTjluYXFxS3Rmeko4 MTNubDdYJiN4QTtMWFVCQnAvbTluZ3NkTTBOYmE0dDdpMHVOUWxlM2dra2tta2tqdW9nUjZu clFoVW9qWXFwVGZtWDVtMExUL01ra2lXOXpwZmw3VXJiJiN4QTt5MXBSZExxNXZwN3FaYlFM Y1hMSTBqeWhGdVN6TEduT1E3Q2grMHF1ay9OZnpjbWxXZDdjV2NlbmFkSHFOeFphcjVodmRN MUNLMVdHJiN4QTtOWW50cHZxY2p4WE1FZHg2eFF5eU15UnNwcldveFZXaC9PSFZianpkZFdV Tm1Cb2RyZjMrbDNNejJWK0Z0dnFFVWhhK24xQXFMTDBEJiN4QTtQQ1VhTWZFcWtOeU80Q3FX UmZuTjVya3Q3K3p0RXNMN1ZJZFEwTzFzcjFyTy9zTFNXSFhKbWhWdlJ1V014Q0dOcVNxeFZ3 UVFPMktvJiN4QTs3emI1czgrWDNsano1K2o3cXlzTGZ5cnA5MWFYdDJrVnd0M1BmSnBZdXBK clJsblQ2cWlOTXZwbHZVTzNYRlZDOS9OWHpkNVRzdlQ4JiN4QTt3UTJlb3lUYUhEcW1tdlp4 M0lkWlh1cmF4OUc0cTA3elZrdlVibkdpa2dOOEZhWXFxV241b2VmYjY4MHJSN1N6dG9yN1Vk V3VOUGoxJiN4QTtTLzAvVWJHMm10b2RQTjZMaUswdVhqdUZaU3JSc2pPUVN1ekFOVUt2WDhW ZGlyc1ZkaXJ4enpYNUx1NWRHWFU3bTExUFZJVjF5OCt2JiN4QTs2TkJVRWFYSnFWeExJc0VF Zm92SjY4Z2dsSlptT3lzcFZSbXN5NENZMmJQcU5qK2p4SGw3OWk5NzJiMnJHT1h3NHl4WXo0 RU9HWi8xJiN4QTtVWW9BY1VqeEFjSTQ0N0FEY2dneUtWNnorV3M5MW9UejZqcEZ6Y2E3QUZn TEtaNUtpMzhzcVZLaU5qRy8rbndxdk1WNU9PRlQweXFlJiN4QTtsSmpaQjR2K09mOEFGT1pw ZTNvd3pDT1BKR09FNy93ajZ0V2U4V1AzVWlhNlI5VkRteFR6ZDVjODJhcVhsc2RMMU81MVpM YXpUekRjJiN4QTtCSm1NcWZvN1RHU0NRRTFlVkxqbkk2Y2VYUmo5bXE0K2JET1hJRXlyMWY2 V1A2WGRkbWE3UzRhRThtS09MaW40UXVPMzczUGNoM1JNJiN4QTthaURkZndqbnZJcHZLTjVj ZWJmTTByK1hkUmV3bUU3YWtmU2tRWG9UekJGZFA5V1lzdkl0WXFvUUlWTEZUeHFkemtIQ1RP WHBOYjM1JiN4QTsrc0hiL05kWEh0T0VkTGdBell4TWNQQnVQUmVtbEFjZTIxWmJ1N0FCMzIy VGJ5UG9YbURUZk91bUxlYVZkeFEzRU9rVGk3OUpqQkdMJiN4QTtQUWJtem1TV1FiUnlDZVVM d2FoKzhWbnA4VW81QlkvbS9aQWo3M0I3WDFtRExvNThHU0JNWlpoVitvOGVvaE9KQTZqaEYy TnZ0cnRXJiN4QTtiVjgrU2J6RjVPOHUrWVd0MzFXMU1seFo4dnFsM0RMTmEzTVhxQUJ4SGNX N3hUSUdvT1FEYjRxaG92eSs4cFIybXFXZ3NuYUhXckpOJiN4QTtNMVQxTGk0a2VhMGpXVkZq YVI1R2NFTGN5ZkdEeTM2N0NpcUNYOHBQeS9XOFc3WFRHRWlUTmRSeC9XcnYwVW5kR2plVklQ VjlGWGRaJiN4QTtHNWtMOFZhbXB4VkErY1B5OCtzNlBvbW0rWDlMczNqMFdBMmRrMTFmMzlq SmIyM3BMQ3FKTmFDU2FaQ2lBU1JTTlJ3QlUxM3hWVTBYJiN4QTs4b2ZLMW41ZjBMVHJ4WnA3 M1JiQ0xULzBqYlhOell5eXhwOFRMSWJXV0l2R1pDekNOeXdGY1ZaQjVqOG5lWGZNWnRXMWUy YWFTeUxtJiN4QTsybGltbXQ1RkVvQ3lKNmtEeE9Va0FBZENlTGR3Y1ZTMXZ5czhqZlY5UGdo c0pMVk5MdHhaV2JXbDNkMnNndGxZc0lKSklKbzNsakRFJiN4QTtrTEl6Q3VLcDdjNkhwZHpy RmpyTThIUFV0TmpuaHNwK1RqMDQ3cjAvV0hFRUllWG9wdXdOS2JkVGlxUzJuNVorU2JXQzl0 WWRQYjZoJiN4QTtmeFNXOXhwMGx4Y3kyWWlsWU82eFdza2pRUWprSy91a1duYkZWZlNmSVBs ZlNydXp1N1NDZHJyVHhjTFp6M04zZDNieHJkaUpabERYJiN4QTtNc3Bvd3RvNkEvWnA4Tktt cXFFLzVWWDVHVzIwNjNoc0piVk5LdGhaV2IydDVlVzBndGxQSVF5U3d6UnlUUmhpVHhrWmhX cHhWRzNmJiN4QTtrTHlsZVdlcFdkeFlCNE5XdkJxVjhQVWxWamVLa2FMUEc2dUhoZFZnU2hq SzBwWHFUaXJlbmVSdkxPbnlTUzI5dEkwODFrTk5tbnVMJiN4QTttNXVaWHRSTExNSTJrbmtr ZHYzbHhJZVJQTGVsYUFVVlExdCtXdmsyMHVOT3VMT3psdFpkTGd0clcxTnZkM2NJYUd5WGpi Sk9zY3FyJiN4QTtjZW11eStzSHhWYnBuNVplVHROMVMzMVMxdFpqZldzbnF4VDNGMWMzYjFF VXNLRGxjeVROd2pTNGs0SUR4WGtTQlhGVWRMNUs4cnpXJiN4QTtXcjJNdGdzbHJydHdielZJ bWVRaVc0NFJvSlFTMVkyQXQ0K1BEalFyeUh4YjRxZ3JuOHMvS0YxWVcxaGR3WGQxWjJydTZR M0dvWDh3JiN4QTtrOVFxenJQNms3R2RDVVg0SmVTKzJLcTAzNWUrVVp0VHZOUmV5YjF0UldW YitCYmk0VzFuOWVMMEpXbHRGa0ZzN3ZHZUpkbytYdmlxJiN4QTtFc1B5cDhoMkJacmZUNUM3 VFdOdzBrMTNkenVaTkxrYVd5SmVhVjIvY3U1b0swSStFMVVBWXFyYTUrV3ZrM1c3Mjh2ZFFz cERjYWpBJiN4QTtiWFVUQmRYVnFsekUwWmg0M0VkdkxFa3BFYmNRenFTQjBPS29yVVBJM2xU VVhEMzJuSmNGZFBrMGtDUm5LL1VwWGprZUxqeTQvYmdRJiN4QTtocWNoVFlqRlZsaDVEOHMy TW1ueXhRVHl6YVhjUzNkaE5kWGwzZFNSelR3RzJrUE80bGxaZ1lYSzhXSlVkUUFjVlpCaXJz VmRpcnNWJiN4QTtkaXJzVlVMYjZoNjExOVc5TDF2VkgxMzArUEwxdlNTbnE4ZCtmcGVuOXJm ang3VXlJcmVtM0p4MUhpdXE5Tjkxbmw1Y1hGeTYzMVY4JiN4QTtrMU94VjJLdXhWMkt1eFYy S3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3YvMlE9PTwv eGFwR0ltZzppbWFnZT4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgIDwv cmRmOkFsdD4KICAgICAgICAgPC94YXA6VGh1bWJuYWlscz4KICAgICAgPC9yZGY6RGVzY3Jp cHRpb24+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAg IHhtbG5zOnhhcE1NPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vIgogICAgICAg ICAgICB4bWxuczpzdFJlZj0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL3NUeXBlL1Jl c291cmNlUmVmIyI+CiAgICAgICAgIDx4YXBNTTpEb2N1bWVudElEPnV1aWQ6RkUwRTNDM0Y2 M0EyMTFEREI5QzJFMTlERTBGMTM1MTc8L3hhcE1NOkRvY3VtZW50SUQ+CiAgICAgICAgIDx4 YXBNTTpJbnN0YW5jZUlEPnV1aWQ6RkUwRTNDNDA2M0EyMTFEREI5QzJFMTlERTBGMTM1MTc8 L3hhcE1NOkluc3RhbmNlSUQ+CiAgICAgICAgIDx4YXBNTTpEZXJpdmVkRnJvbSByZGY6cGFy c2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgIDxzdFJlZjppbnN0YW5jZUlEPnV1aWQ6 RkUwRTNDM0M2M0EyMTFEREI5QzJFMTlERTBGMTM1MTc8L3N0UmVmOmluc3RhbmNlSUQ+CiAg ICAgICAgICAgIDxzdFJlZjpkb2N1bWVudElEPnV1aWQ6QTIwMzY2OTM2M0ExMTFEREI5QzJF MTlERTBGMTM1MTc8L3N0UmVmOmRvY3VtZW50SUQ+CiAgICAgICAgIDwveGFwTU06RGVyaXZl ZEZyb20+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBt ZXRhPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg Cjw/eHBhY2tldCBlbmQ9InciPz7/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRy UkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA 9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAA ABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRk AAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAA ACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0 AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAA AAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAA AAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQ WFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklF QyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAA AC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAA AAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAA AAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0 aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRp dGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAA ABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAA AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQA AAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACB AIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwEN ARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJ AdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLB AssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5 BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3 BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9 B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglP CWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuw C8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5k Dn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFt EYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTO FPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiK GK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyj HMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEc IUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3 JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2 K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDb MRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbp NyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1h PaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RH RIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0ua S+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1Nf U6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuV W+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RA ZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1g bbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4 d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEK gWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuW i/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaf lwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqIm opajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4t rqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1 uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/ yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO 1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj 4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/ 8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////7gAO QWRvYmUAZMAAAAAB/9sAhAABAQEBAQEBAQEBAgEBAQICAgEBAgICAgICAgICAwIDAwMDAgMD BAQEBAQDBQUFBQUFBwcHBwcICAgICAgICAgIAQEBAQICAgUDAwUHBQQFBwgICAgICAgICAgI CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAj/wAARCAApAP0DAREAAhEB AxEB/8QBogAAAAYCAwEAAAAAAAAAAAAABwgGBQQJAwoCAQALAQAABgMBAQEAAAAAAAAAAAAG BQQDBwIIAQkACgsQAAIBAgUCAwQGBgUFAQMGbwECAwQRBQYhEgAHMUETCFEiYRRxgTKRCaEj 8MFCsRXRFuHxUjMXJGIYQzQlggoZclMmY5JENaJUshpzNsLSJ0U3RuLyg5Ojs2RVKMPTKTjj 80dIVmUqOTpJSldYWVpmdHWEhWd2d2iGh5SVpKW0tcTF1NXk5fT1lpemp7a3xsfW1+bn9vdp anh5eoiJipiZmqipqri5usjJytjZ2ujp6vj5+hEAAQMCAwQHBgMEAwYHBwFpAQIDEQAEIQUS MQZB8FFhBxMicYGRobHBCDLRFOEj8UIVUgkWM2LSciSCwpKTQxdzg6KyYyU0U+KzNSZEVGRF VScKhLQYGRooKSo2Nzg5OkZHSElKVldYWVplZmdoaWp0dXZ3eHl6hYaHiImKlJWWl5iZmqOk paanqKmqtba3uLm6w8TFxsfIycrT1NXW19jZ2uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIR AxEAPwDf456vV7nq9Xuer1e56vVqVenn8YL0N/h8eg/ozn/0+ei3qPD0m9QXqAz7kDC+j+CY tHm7NsmcFr3mrayjjxSq3VbV9QoWmpElU7mCgi/PV6h966f8KNqDoTikGVMa/Dg6yY51B6c5 OpeoPrCyLSJgorOkeVMTxeXDqF8SLy7aislhENU8K+XGkUynzmKybPV6hE9Yf/ChPpV6ZMzU Y6dekLql6pOkWWch5R6m9deu2VcPo6TAMn5NzvDT1WFS78WeIVVXJBVwzPAXhVUkB80lZRH6 vU2erj/hQvkP08dS5enfSL0b9Q/VrC3QjB/UPHm7KU2GQUFH07xSVZJMRxNKzdNSU1LSsJZZ gklmZE2jcXX1epY+hz8fTpr61fVH0g9OD+kLqj6e8P8AUzkuvzx6Xep2dKTCIKLOeEYPDNLX yJBh1VU+RGBTSmCQSSCVVDERh03er1X7c9XqxzTRU8UtRUSrBBArPNM7BURFG4sxawAAFyTz RIAk1dttS1BKRJOAA40wZfzjlHNgrDlXNOG5lGHyGKvOH11NWeRKpsUk+Wd9rAjsdeMW94y7 OhQVHQQfhRtm+7mYZfp/NMuNahI1pUmR0jUBI8qf5poqeKWoqJVgggVnmmdgqIijcWYtYAAC 5J4+SAJNFLbalqCUiScABxoPJusPSqCowylfqJg7TY1l+tzXhGzEKaRarLOHGnFTisTRuyvR xfNRbpgdg3rrqOF5ze1BA1pxSVjEYpESryEjHZjQwb7Os+Uhahauw28m3VKFDS+vVpZIIkOK 0KhB8XhOGBpX5ezBgmbMAwPNWWsUhxzLmZaOmxDL+NUziWnrKKthWpgniddGSSNwykdweK7e 4Q62FoMpUAQRxBxBoO5xlF1l925a3KC280pSFpUIKVJJSpJHAgggjpp449RdXuer1e56vV7n q9UCuxXC8LagTE8Sp8OfFahKTC0nmjhNTVSI0iwxCQjfIVRiFW5IBNtONrdSmJIEmB1nopXa 2D74UW0KUEJ1KgE6UiAVGNgBIEnDEVP45SSvc9Xq9z1er3PV6mqgx3BMVrcZw3DMZpMSxHLk 0dNmGggqIZp6Colp46tIqhI2LRO0UqSBXAJVg3Yg8abfQpRCSCU4Hq449GGNL7vKrphptx1t SEOgqQSCAsAlJKSRCgFApJEgEEbQadeO0gr3PV6vc9Xq9z1er3PV6vc9Xq9z1er3PV6vc9Xq 9z1er3PV6tCL0t+mP1H4R0I/B2w3GvT3nfDK/IPr9zbmjPNBVZTx6CbBcuTYrLLDi1ektKrU 1C495KmULGe4bnq9R/8A1S9Z/Up+Gb+NF6zfVjlz8P3qv6zstesTpT09wH09xdOsDqsQwioz TlvyKGpw7GsTpKetOGjbTPJvFNM+3aREVJZfV6qz/wAcPBfXp6hfUN6usrdb+hnqaOV8c6Fd O6j0d9C+jzZhzR0kps21lHQ4lm2nzXUYFSxUuINRYg1ZAsjQq8yRRkooNOo9XqHfLHpu9REP WnqrWzdBM6RUdd+DbDkCiq2ytjixTZ8GE4TGctoxpbNi+5GHyIPn3BGzTnq9Q5+iToH11y76 1f8AhNxmHMHRbNuB4B0l9KeacE6q45WZcxilo8s4zNlOpgjoMWmnp1SiqnchVhnKOToBfnq9 W5Jz1eqtbqfl7DfUz674ugHVCL+cdC+gvT/Bs8VnSmqv/LM3ZozNmDEMLpKjEqZrx11DhkOE OUglBjM825lPlryOMzt05lnv5V7FhlsL0HYtSlEAqH8SUhOAOGo47BWam4+bvbk9lRz7LDoz XMb1y1Fwn77dhhltxaWlbWnX1PDUtJ1d03CSNaqDuo9UOVsnjMWUug3pdk9N/WqXqn0m6Y53 oMcwPJMUcv8AWWSnx+Q+bkPGcSgq/ksBqaidFM/6FpR7p99eFyt52mdTdrb9w93zTStSUfxQ r/W1KB0tknbhPnQxa7DL/Me6u89zcZrlgy7ML5otO3RI7gKaGF2w0pvvbtKEEhH7QIOP2mlz 6j/VtnDIlZ6+qfCsLwbHMk+mPpXgFVhmDVtFJVyYn1BzdHjctPQ1QEwSSkMEWHq8GxWPnk7i GAC7eLex5g3gSElFuykgETLi9UA47I04ddBbsZ+n3Ls1b3bU6t1u6zbMXkqUlQSEWduWApxH hkOay+QuSB3ewEEkmHqbiq8Cm9b2H5Vwajy7V9H+g/TPoLkbB8Eohh+FU2YurWMz0s8WF0tO dtPFEtbhmyNNVULbsOA3eUFBuwgBJat2mEhIgBTpIOkDYBKMOGFZKdiDjd0nd9y6cW6m+zm+ zZ1TqtbimcvbSpJdWcVqUUXMqP3Eq6TRr88dfepOC5F9TQ6HZhwTpN6f/QfgNbgeMdQMRwds exfMGZMr5Vixaow/DYJK2jpqamoo5IKeSWVJmmnLxoqbNzCq+z65Qw/+WUlu3s0lJURqKlJR JCRIACcASZJMgARJgLdfsmyW5zXKf5209e5vvE8l1LKHO6bZZffLaXHVBC1rW6QtaUpLaW2w lalK1aUih0F9SXU7NXUTMOWeqcmFYVgHR3oz04zX1rxSGkel8nPGbYsVxHEEhMk8gjo6elwz eI2uy7xuY6EmeRbx3LtwpD8BLTDa1mI8a9RMY7AE7NuO2gN2r9i+R2GTtXOVhxbt9mt7b2qS oKm1tyyhsqhIlxbjsFQgHSYSMQAl6Xepv1VdZR6IMpYH/VnKua/UD02zH1L625inwisqosu4 E1Tg64EtDRGui31EwxXySsk1gVaSzKhjJVle8ua3n5RtOhK3mlOrME6UynRAnadUYnrxiKkD frsR3C3bO8F2/wDmHrfLb9mytUBxKS87pe/Md4vuzCE9zqBSiYIRKSoLCJyd6p/WDP069LnV fMeYsnYnhXVLq/RdM5cp0WX61Js0ZffMuJ4FUZiWpOJN8lUGkw+SuipUjeNVjJZ2D7I0VnvR m5t7d9akEOPhqAk+JOpSSudXhMAqAAIgYnGAJt4+wjs6TnOb5VbtXSHLPLFX3eKeTDDwYadT bFPdftUd44llThUlRUoaUjTqW/dPPWn1069dQMp470bwt6/IuL5+OCR9OW6fZrakHT2ixiTC a/MuJ5yqzTYXBUywwyVtBS0+/cuyFhK7SNC/l++d9f3CVW4lsuadPdrjuwYK1OmEgkAqSkTw GJmCrfD6aN1t1MoeYzhYTdIsu97785b6vzimw43atWSdT6kJUpLL7rmmDqcBQkIDg9eohv67 etX0F9LhG9bQZQm6gdTsxUi/5OL+ruXEyfh0smoP+9OaSUtfVddDqe7wnvs6s2NoT3jp/wA1 OhPvc91RR2PJ/lnZnvHmchK3xaWKDxPfPG5cA/zLSDPA4Y7Ar9RHrH6nQdZusHRHoe1VhWN9 FMHwuSSWj6cZr6g1+Zs5Yzh/87pMFi/kpgocPpIqSSmerqKudWIqBtMKxtIxXvDvhci8dtra QppI2NrcKlqGoJ8MJSAI1FR/iwiJoedj3045GvduxzrO9K2r91weK9t7NDFs2vulvnvdTrzi nA4Gm2kEAtHUHCsIGHPHqK9VuK4/6jsOwPEsq9GcB9NHSfLOZ+pGNVuFVGZJafPtfg2K5jr8 MgtW0kZo4qaGnLyNuZVsVDGW8Wr3eHNVuPhJQ0lhlKlEjV+0IUopGIEAAY/jg5uv2Obg29pl bj6Lm/dzbMn2GUpcDINohxllt1XgWrvFLUuEiATMkd3C5OWPU96jcsdS/SrV9cMTyrheS+v/ AE/znnXqlkHDsKrY5MhUWVcFwzGBULiktdMaoB8SSnqS8KqWN4xYEm1tvNmLVzbm5KAh5ta1 JAP7MISkzqkz90HCOimc87Dtzb7JM4RkiLldzlt7bWzDy3EkXarh11vSWg2nRg0Vtwsqj7zj AY5fUx6qMxYT6Q+rkWK5f6d5W9V/UDLOGZC6EnAZcQxtciYtR1mP1FZiuKT4gAtecJo2qNlP TLHTyMsbmaxJYO8uaOItn5ShNw4kJb0yruyColSp+7QJwACTAM0aN9ie4dncZ3lJQ/dP5NZP rdu+9CGvzTakMpQy0G8WvzCw3LjilOoClpDeAAN5p6idYOrVV0wfolmzAeiOMeo71K5uwOoz LguWpFr8z5T6UDEglditTSYhRy1iMMpPT1KMwE8EyQkxorBye6zC8uy3+WUlov3S0ylOKkNa sVEEE/3OD0pITgAZkfItzt3d30XYzpl7MG8ryG3dCHXxoYuMw7qW2UqbWlsj84FtkA9242pw BalJKRbx/wBY/XnKWP8ArJ6hYvPgmK+nr0UVdDgc8FBhE/8AWLqJnGbJWFVUmE00jVckWGRr i2KRKz+VUMwkSNdu12Y2f3wv2nLp1Wk29qQnAeJxehJ0jGE+NQ4KOIAiCTH2U/TjupmFpkWX sh1GcZ+lToK3B3NnbC6eSHlDQFPk27SiBqaSClS1atSUpGv0sdZ/UR1L6oVtHnKRM3dK5Mq/ zDH85J08zXkDD8IzkcRp4o8IwZ83OlTi1I1NJO0tR5P6OSFbsDKYojrdfOcwubohzxNaJJ7t bYC5HhTrxWImTGBG3GBGfbv2bbn5JkSV2YLF+LnQhv8AOW92ty20KJefFuCi3cCwgJb1eJKz AIQHF2D8H9Yh17nq9Xuer1e56vV7nq9Wmy34vXrokqKagwzr3kXM2MV1RT02H5bwSrwzHsWq Z6mQRosNBg2RqqpksLu5SMhEVnYhFZh6vUlsU/GW9dafz2kwz1D9ParE8u/KVFVh+HYxkDGq +qpZgZhHBT1WFYNTRzziN4lWrroHhBFQ0ckZiSf1eq9bBPV31tl/CCzZ6uKjM2E4p1ww7Kub q+gzVRNh2K4Wldh+YcQwmlmj+UpKSmmMMcSEr5AXetnDe9cK78Zs9Y5Q/cNYLQgkcYPTHVU+ fS12f5bvV2iZXlOYAqtbm4QhwAlJUmZKdQxGoCCRBAOBBxpXZn9WubfQ9iPTPo/6o86yeoPN XVTMGKPlTqbAuVMs10GVZMwYLgNEKzD0OFxV2IRT40pkhw2nLGCN5CpKEsGrnex3JFN296rv luKMK8CTo1JSJHhClAqxCB9oJ4VN+R/T9l/agzd5vuwwMsYs2Ww4wfzD6DcBl91zQ5+1U0yp LB0ruHAO9WlE+IQFWK/ikZoz6MsYT0n6JYrlbMkmfemeGVtPjtXgckWL5VzfnrF8l1MtO1LU y+RK1Tgc0KeaFZd6yW2g8Kne091/SlhopV3jQ8RTilbikGIOBlJGPSDQ9sPoWscp713Ncwbe ZFnfLBaS6C2/b2rNykK1JGtIQ+hZ0yDpUiZpZ5x/FryDkHDcmY9m7otjuXsAz3imZ6XLVbW4 5lKjmxDC8n5mpMp4lX0VPU4iklQ/zdankUagVEqLJIqbE3FZd9q7DCUqcaUlKyoCVIEhCghR AKscTgn7iJMQKDW7v9X7m2bPPsWl+y67btsKWEtXCghy4YXcNNrUlshA7tB1un9khRQgq1Kg W28liufle56vV7nq9Xuer1F36semfInVbOmWeqK45j3TXq3lGgqcJwTqllXEzheLfyernWql w+qWWOopaylMqCVYaqCRUf3kCsSSHs13aYunkvSpt1IICkGDBxg7QROMEGDiKmHcDtszXIMs dyzu2brL31pcUxcI7xvvEgpDiCClxtzSSkrbWgqT4VEgAAKq70GdK6zJy4BFnfOFFnGLqBS9 UYOswxWhqs0pnikwlMBjxDfiNBU0LqKFPlvl3pGg8vQRjQgrXuJalnTrWF94Hdcgq1gaZxBT 9uEaYjhQ9tfquz5vMe/NvaqtjZKsTbd2tLH5VThdLcIcS6D3p7zvA6HNWJXUiD0H9HUyz1cy zXY/mfHF665qytnDqlj1fi0VXieKYrlOXCqiljaolpiUpZZMIiaSBAEUM8cQiiKotk7i2fdO IKlnvlpWokySUaYxjYdIkbNoEDCmXfqr3jN9ZXKG7dv+XWz9swhDZShtu4DwWQkKxWkPKCVm VEhK3CtYKip8Z9HHSbMGMZwx3FqzGazEM99R8rdT80O1dDtqscyZSYbSYTRsPI1w+AYTAwgO pYH37GwUvbn2ji1KUVErdS6cdqkBISNn2jSMPfRHlv1HbwWlsww0lpKLewfsW/CfC1cqdU8s eL+7L75Y17IP2zjQcZ//AA8ej/Uah685XxnPOc8P6Yeo2vrca6i9IaDFsPpcAbMeIUkVJPi0 B/l7VqzP5CSmCSqel85RL5G8BuF1/wBn1ncJeQpbgafJUpAICdREFQw1TgDBJTOOmaGe6X1g 7xZM7l1yzb2qr7K0JaZuFtrU73KFFSWVftA0UjUpOtLaXtBKO90mKUfU70M9Mup+bOsGZanP OcMmYd6gMCoMA6z5Jy/i1Fh+FZgp8Io5cPoJpWehmq4ZIIZmjKU9RHDMnuTxypdSozPci2un XVla0h5IStKSAFQIB2EggGMCARgoEUTbj/VJnmR5fY2ybe1fXlry3rZ15tS3GS4oLcSIcS2o LUkKlxta21eJpbaoIFfJHpx6edPs9Yd1Cy41dDj2DZDwLpzgcbzQNS0WXcv1dTW04hhWBQsz vUfpWN1YIgCgLqa2W7tvbvh1E6g2lsdASkkiBG3HHyFAHeftlzjN8qVl9xoLTl47eLgHUp55 KUq1K1ElICfCNoKlEkzgmMsekTpRlPLHpeyfhs2KzYB6Sao1/TSjnq4ZPm8Q/q9X5cFViZEC /MTCLEp5Qy7P0rbjftxNbbpWrTVu2J02xlOO06SmVYYmFE8McaPM8+oXP8wvs3u3A2Hc6Tof ISRpR3zb2hrxeBOppCYOrwDT11i6RelbC+iOOU5yJ1iztTdMsNxDFsSwDoPUVuA1GVcOmxlq mWeKBzhAxU0yS1TSQ08le8UbBdigC3NZTusmyX+ydc7oEkNkp0DVMx4dUSZAKiBwFX7Qu3h/ ee1P56xtDfLQ2hd2lLofWG9ISVDvu41lKAlbiWErWCdSiTNcup3pWwfqN1jwvrrh3V3OnS7P +FZZfKUNTlqswOKmfB5cU/nEqtFjOE4iBJJMsZdlIuI0Hhr7M91kXF4LkOONuBGjwlMRM/xJ VtMewVrcft4uMm3cXkbllaXlou4FwQ+l0qDgb7sEFt5rBKSqAZgqUeODK3pBoKLPGK9Qcp9e +oWRMwZzocFpOrRwuvy20OcanAcPjwqnxHEVxPBKtqetanhSOSbDmpSyqq2AUAM/2RSl8utv OoUoJC4KfGUiAVSkwqMCUaaMh9RDruVosLvLbK4ZYW6q37xD02yXVlxTbeh9AW0FkqSi4D0E kzJJpQ5l9JfTDNWVfVLlTE67GVp/V/NLJ1dxWKthSuMEuWqHKXytFIYCIYFoqBUVWVyCzm+o AUXO6ls61cIUVRc/eZx+0IgYYDSOvjRRkv1AZ5YX+T3TaWtWSAC3SUkpkPuXGtY1eJRdcJJB SME4YGVNmn04dMM6dQZuoeZMPnxCrnyJjHTlst+akeELlrH6ymrK+NIIo1dZJvlIoyyuAEUA Dx4put3bZ6471Yk92W44aVEE4dJgDbsokyLtmzzLcoGX26glIvG7zXBLnfspUlslRMFKdalA FP3EknhQO9PvQl02yLj3QPMmJdRc6dScT9MRqYuiRzFimG1EOC4ZUZerMsDDxDhuHUUc0aU1 ZpPMr1TtHEZJ3CAcJ8v3GtmHGVlbjht50aiPCNJTEBIkQdplRgSoxUjb3/VTnWa2mZWzdraW qM20m67ltYLqw8h/vNS3XClRWj7EFLKQtzQ0kqJpywH0R9M8qYf6ZqTK2cc0YBWelevxmtyP jcVbhc1ViiZkMv8AOKbFRW4fPDNHXLM6yPDHFMm4mGSNve46xuVbNJYCFLBtySkyJOr7gqQQ dU4wARwINIs2+p3O797Nl3TFu4nOENpdSUuBLZZjuVM6XEqSWikFIWpbaoAcQtOFKVvSD0fq OlvXbpDiUeKYplT1EZizDmjP00te0dfHjGYauOteWiqKVImg+VkhiNIRdo/LS5YjVSd0bM2r 1uZKH1KUrHGVGcCNkQNPRAokT9Q+8SM9y7Nmy2i4yxhlhkBEoLbKSkBaVEhfeBSu92BWpWAm hE6T9LMd6Zw4rHj3W3OHWifEY6OGlrM2SZcZ6GGi84KsC5bwfB4yzib9LLKjySbVLOSLkwyr K12wOp1bsx9+nCJ2aUpHHEmScJNA/f8A37tc7UgsZfa2ASVEi3D0KKtM6i888qBp8KUlKEyr SkA4C/w3qO69z1er3PV6vc9Xq9z1eqlvGfwT+mWYanPUmO+sLq/jWHdTKWkpM/5XrcP6EV2C 4xHRK0cclXh1Z01lpZpyhWOSeSMyvGkUbMUiiVPV6hEX8KrYqonr463IiABVFH0GAAGgAA6Z 89XqODTelTJlb6W8Y9J3UDOGYOq+Ssx4Ti+D5kzjjUmC0mYa6nxeqqKppHfLOG4TRRywme0R ipEACLuDHcWLc4ypm+tV27uKHAQfI9FDXs53/wAy3Vz62zewITc2riXEEiRqSZgjiDsIwwJg jbQF0v4avSenremGNz9YepmJ5s6d4xiuM4xnWpzRTyYrm2TGcXwrG6mmxqYUCg0xnwamAjo1 pvcUoSVdwQens4tQptRddK0KKioqxXJSohWGyUjBOnDDiayNf+tLP1tXbKbGwRb3TTbaWksE N24bbdaSpgd59+l9zxOl3xEKABSkgnfpo6behv1FVObcH6d5p6nZEzJg1FlPFsDxrMEeH4FV NRZR6o49mPD8awWoagkpp0GNVtXSSsd42hU2K3vsEN28tyTMSpLSnUKAQQVQkwh1agpJiD4y pJ24QInGsjO2vfTtR3OQw9mDOX3DLi7htaWSt1Oq4sbdlxh9PeBaD+WbadSPCZKlainwg52c fQD0DzLhXSPA6jqPmzKj9FK3MktBiOEZhocKxDE6DN+Z6XNGJYViU8NGHNJNWwU4UQGGUKAo k99twxvNwrBxDaStae6KsQoAkLUFKSoxsKgNkHhOJnG3dz6td7LJ+9fTa2z359DIKXGVOIQu 3YWw060krjvEtqXOvvEEkqKPCnSfxcSw5pZYFr4WngKCeESoXQySGFAwvcbnBUX7kW78HveJ mJrEw2TwSFaTBmDBxgSfYMT1Y0FeGdc8gYt1dz10Vpq6SPN3TrA8EzBmWrkWJMOShx/EMRwy mVJ/M1lE2FzLIhUbdNSTYFbWdsLu124PjQlKj0QoqAx6ZSZod33Zdm1vu9b5ypI/L3TzrKAJ 1lTKGlqJTH26XUFJkzj0ULS1NM0hhWoRpVYo0QdSwZVDkWve4DA29h4bahUfllYEwYrPzdN1 XPiceOepH1lde+iOcepuaMh9L/T3lXIFfgfTbKeY8SydiGYcQznJjs8uOV2K5closWakhOFr SUcEFVHAZYaozLOSixer1FWyp6iOu/p668+t2pkw+k6m+nnLPqe6FdLamfG8zY1U5uoF6odJ OimSKeTDY6imlpkgosVzHBX1KvLeqNRVOPKlQNUer1S+r34s2JdKMX9Sb0OTMM6n5M6bdKOv PUnphnTBsOzxRYRV1XQ8QGfCpcXx7CaLCsW+bFRaWfCKuUUs0bwuHBWY+r1KDrb68/V90i6a er3NjdFOnlfmj0I9MJuo3XrBTmfMLUOJVFZh+O5mgwbA6j+VRyP/AC/B8KikmrKiJEq6mQwx x06hpl9XqkYx63c75z9b+C5TyR0qz3mfpV0X6hz9K8202CYB1KOGVWJ45guHSVWasRr8Ly1J gMlDgtRVCk+VrMUQLG89aRvjpVPq9SW/FI9UPXr/AGdvxTem/p8wjB8u0/pg6A5gxrP3UzEM wYtg2YVxPNWTMw1kJy9/KKaRqefCqSgFZHUyP+nqGWnTyNj1C+r1C/8A8OJZ4xr1UYz0fyH6 f8wZ26X5M6lUPS/Oua6DKHUmsqKerqMJpKurzD/NqLLs2XoMOw6srY6WogqMQSXylkqd6qsc M3q9Tl6pfXr1E9O3WP1BYLQdLsKzZ0c9LXSDKfVDqbihrsWGacXxDPOMZ5yzgeA4NQ0FDVxs Z6/KkZmqpW/Qxu1opSwMfq9SByt+Ib1/zJmPLfRb/Z3bBOsXU3O2HZW6UZ/zHgHUvIWRsRw6 fI2N58xSv8nPuXcJxSefCocvVVM9LTROJ5Hpn86BJZflvV6g16nepv1RenL1E+uXqjW4Llzq DkLoJ0w6I5m6uZQfHceo4hBNiGdo8WTLFJJTVEMNRLTwibzahwJGhjhYWbzofV6h2yx+Ilnj O/qiqulWS/T/AJgzR0hwnqVi/S/MWdqPKHUmaXDqvA6GdKzMM+MR5dbLi4dFilO1A8BxEShS Kjfr5HPV6kT6YvXh6sPU5lX0wQYR0m6fZLz/AOpjphRdbaeSrx7MFbhOA9PcUo8Djwqkkjio YZ6vF6+qxGZpljZIKKJVBepfb5nq9Sb6G+pvr70z6rdTKfN2C4Vnfoh1A9U+aumNHik2O4vN mnCXxbDIajDqqlpqmmakSgp6uA0zUQmuI5DOkgKeRJ6vVF6U/ipdc+s+RcZ6n9LPRhmrqPlH O/TPHuo/QOOlyr1MwRZBh9RhzYThGKYpmPLFJhtXVYzQYkK6nOET1J/QTwIkxEUsvq9Rhsse pHHvUovo5yZkDqFSVOL9QMdzFmzrfmHLNJmLLvymVOlWK/J1eGTUWZYIcSw2snx6pwnD8Qwy ujSURGuha/ltf1eoo+VPxXfUbmHo16bc2/7OmGYn1U9THSz/AD2ZQyNlvC+qmdqOkyXVYVgk mDYVWy5Kyti9RT4pi1ViM+6doflaJECsal9pk9XqGrPH4ouL9KMU6t5n6y9GcS6OdPch9M5u ofTbIuYcGzNRZw6gQ0XT6hztiFJhVU9CuEx4hh9TUzYZWYTJMayJqeSqdEp7Hnq9UjLv4hvV 2pyz1Hw/P/Sr/NVnXCa7KFJ0qzZi3T/rjTYNm+tzZQ43Xz4LgmB4tlLDMfxjFsHXAah6uKgp 3RqVo6tmgDSQRer1BrhH4tGf8dyDTdXouh+HYD056c9Hs/8AV/1FwV1fjaY7Q0XS/M2OZVxr C8EoKvDaOaaoqajBy9Ka5KVo0uJo1kOxfV6hM9SuefWZR4d6DsSxmmyZljqTn/rbl6lgyfgO YsxnL8VDXdNM5VVXQ4riC0qPicFK8STp5dPElS8SjbD7si+r1BrjP4rPViOnw/pzlv0+/wBZ fUPlv/O1/nHwLB8G6l5wy9UTdKs9SZDggw58iZZxmugGP1EZlinrIFSiUMsgqG8vzPV6hgov xC+rmI9XszYNB6caqHprlDLuB4tieVnXFj1QqcZzH0kxbqhTYHDl9aTatbB/I56OaN5PMaaW NFjurnnq9VsnPV6vc9Xq9z1er3PV6tbTGPw2c8Yf6TukWMZk6M5l64dWo8Zxmi6m9F6rHMAk iw/Kj0+eXwulw+CrrKCj8hMYxrD8QlDTvIGQSDWIKMc3uzh9OVNqW0p13UQpBUnBH7XSACQI 1qSo4k4Twiuz+W/Wjlbu/wBes218xl+X902pi5S08Ct8GwDq3FJQ45qNsw+wkhCUwoo/1wqI ITfha9d8b6ZZ+r+oHp9jzV10nwjPNPQ5ulr8IqK6txSHo3kjDMAlWq+csxXHqHEGgZz7koaQ 7QysSX/Ywvl2yy6zqf0rxkST3LQRjP8AxwKjoONSYPrp3Xt86t28vzMsZWHbUlsIcCUoOZX6 7gaNGE2jjAWAPEghAkggKDpl6Z+rHUb1MerLqN026K1hwBuqOYqDNfUMVmCxU+PV+Eeq7KGb NiRNX/MMcOwrCK52MsKAAEJuLqGfyzdu6uMyuHmWjp75QKpT4iLptfTPhSlRxA6pmivfftqy DJtycmy7Mr9Pffy9lbbOl0lpDmQXlvJPd6B3z7zKRpWqZlWkJMBxS/h3+pWnocdXHPRzi2L4 EcayzUdWcrR4rk2aTPU9BU9TfOxGNXxxI6lY5sewiQipeOQ+XvCEICS5PZ9mQSdVqop1JKxK PHBflX344rbOMHCYwoZv/V/uWt1vuM8aQ73T4t3C3cgWoWnKtLRIYJQSm3uk/swpI1aSoayK O96WPSt6punfrL6PY71D6QYjTZOyjWVuMZo6sti2AVuGyTYh0FyxkgwgQ4hJWvOMSwioSRjB tPusGYNfg23Y3YzS3zhpTrRCEkkrlJGLDaI26p1JIOHXNYvdunbpuJm/ZxfM5ffIVcvJS23b 928lYCM1urrVi2GgnuHkFIC52pKQRFbAfJ6rktQA9VfS/wBEes+acv59zvlOpg6iZWpJcOwL qXgGO5gyhmeHC6iYVEuHnGMpV2G1z0Mkg3vSvMYWbUoTrz1erGnpY6Bpg+acCPT6KfDM7Zvy Tn3NkU1dik8lfm/p1FlmHLuJyyzVLSGWhXJ2E7Ru2v8ALKZFctIX9XqDGt/Dz9G+JQZ5o8Q6 J0tbh3UPAc6ZWx7B5cUx96Cmy11FTbmXCsLpWrvJwqjxNv0lRBQJAjS/pbCT3uer1AL69Pw5 29bWIZtwabG8rZJyX1YyYuRurGYjhGbpM2VmCNV1000RfBs0YVheICJKzdha4nQzjDqovVRi Zn8pfV6jpJ6aOjNP1creuWF5arMu9RsYqIazM9dhGP5iwfDMcr6agXC4azF8Iwuup8OxKqip o0gjqKymlkWNVRWCqoHq9SP66eib0uepXEMcxLrb0lpc8T5rwMZaztTvXYvQUuYcAjeomgoM YpsLq6aHEoKWWrlmpUq0lFPK7SQ7JDu56vUsE9NHRmn6uVvXLC8tVmXeo2MVENZmeuwjH8xY PhmOV9NQLhcNZi+EYXXU+HYlVRU0aQR1FZTSyLGqorBVUD1ep8zF0F6OZvx3qhmPNvTzDc04 l1ryrhGSOq8eJQmuo8eyngVTjlXQ4ZV0lUXp3gjkzJiBI8u7idg5YBQvq9QZzei307VmQB0z xfK2MZjyvS4tSY7l+bFs552xfGMCxjD6ZqOkq8ExjE8XnxHCZaaF2jgagqIfLRmVNoYg+r1P lf6TPT/i2X+pWWcbyG2YML6xZbwfKPVF8RxfHcRrMdy/gC1y0NNWVlbWy1MjR/zKoJmMnmuZ CXdjYj1ep0w300dGcE6tYl1uy/lqsy11AxyqfEMySYXj+YsMwbF8Tkw4YScQxLBKCuhwutrf llEIqqileYIAA/ui3q9SPrvRT6Z6vJnQ7IdN05ky5gnprwGDK3QvEMDx7MmXsby3lmCgo8LO E0uM4FiFJiPyU1Ph1MlTTvUNHOIk85XKgj1epcf7N3RH/sAaf/mOP85P+9Fd/wAxv/01f8v/ AJT/AFP8n/qc9XqR+X/Rv6fMo02c8NyjlfFspYDnmGogxLKWFZwznhuB4etVXx4pM2DYZQ4r FR4PJJURLI8mGwwOSNTz1epSdJvTH0V6H5hxjNHTPKH9X8Yx3C6fCMSq3rK2uklp4sexjNE8 0kuISzyyVdbiOO1dVXVcjtPVSMrTO5RNvq9STrvRT6aavJHRbp9SdPJssYD6dsv02U+imIYB mDM2W8cy9limoaTDBhNNjWAYhR4kaKWCgp0ngepZJvKQyhyoI9XqfsX9J3p9zLm7Gs65v6ep nvF8wYZV4PiOH5hxHGMw4MKDEcFGXK5YMIxqrqsPgkrMPApKuWGnWSeH9HKzrpz1epMp6I/T kMqUWTJcsY5XYNguMU2PZRqKrPOfKzE8uYrR0FXhMMuA4lVYzJW4QqUlfUUwioJoY/Ilki2+ W7KfV6lJkD0j+m3pbH8tkPpBhOX8P/keM5ZODKk0+HnL+Ycfqs0Yjh5pKqSWA089dWzStGUs AxQWSyj1eqHkv0f+nzIGG5GwXLeTKwYN0vxylzF0ywivzJmjGKXLmJUOE1uBUwwqHGMRqko6 WCkxGoiio4AlOgc7YwbEer1N+P8Aop9NGYXp6qbp5NgON0eMZox2jzhgOYMzZazBDX52xMYz j6x4vl3EKKvSmxKqCy1VIs4gkKpujIRQPV6hEp/T90hpc3Ytn2nyesecsdmw+oxbMYrcRNVN UYVl6typSSlzUaPFh+I1EAYWJDljdwGHq9Qyc9Xq9z1er3PV6vc9Xq9z1er3PV6iCfh8/wDM KeqX/wAL91n/APY0quAPcH+5XH/eS9/v5rLH6uf+L8o/702W/wDQMij98HlYnV7nq9Xuer1e 56vV7nq9Xuer1e56vV7nq9Xuer1e56vV7nq9Xuer1e56vV7nq9Xuer1e56vV7nq9Xuer1e56 vV7nq9Xuer1e56vV7nq9Xuer1e56vV//2Q== --------------010804030900070209010102-- --------------050900010902010504030107--


This message came from the mail archive
http://www.auditory.org/postings/2008/
maintained by:
DAn Ellis <dpwe@ee.columbia.edu>
Electrical Engineering Dept., Columbia University