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ON DIMENSIONAL INVARIANCE 

D.K. OSBORNE 

Federal Reserve Bank of Dallas * 

I. Introduction 

A law, or indeed any mathematical relation between measurable 
variables, is called dimensionally invariant when its form is invariant to 
changes in (coherent) units of measurement. All the known fundamen- 
tal laws of physics and economics are dimensionally invariant. For 
example 

E=mc2 (1) 
where E is energy, m is mass, and c is the velocity of light, is true no 
matter what coherent units are chosen for the dimensions of length, 
mass and time: and Walras’ Law 

ZPi4i = 0, (2) 

where qi is the market excess demand for the ith commodity (including 
money and other financial assets) and pi its price, is true for all units of 
money and the y1 commodities. On the other hand, an expression like 

Zypjqi( 1 - C/i) = 0 (3) 

is not dimensionally invariant. This expression holds in general eco- 
nomic equilibrium, where each qi < o and where qi < 0 implies pi = 0 
(i.e. in equilibrium there can be excess supplies (negative excess 
demands) but only of free goods, and no positive excess demands), and 
by a suitable choice of units it can be made to hold in a particular dis- 
equilibrium as well. Thus eqn. (3) might accurately describe the phe- 

* The views here presented are those of the author, and are not necessarily the 
official views of the Federal Reserve Bank of Dallas or any other part of the Federal 
Reserve System. 



76 

nomena when (say) wheat is measured in tons, but not when it is mea- 
sured in bushels. For an accurate description in the latter case we 
should have to change the form of the expression in an unknown man- 
ner. To those who use dimensional analysis and other metrological prin- 
ciples in their work this is proof that eqn. (3) is not a law: laws are 
dimensionally invariant. 

That laws should have this property seems obvious to some and 
puzzling to others. Placing themselves in the latter group are Krantz et 
al. (197 1, Section 10. IO) who enumerate three reasons usually given for 
dimensional invariance (DI hereafter), calling them the “physical simi- 
larity”, the “descriptive/deductive”, and the “it couldn’t be otherwise” 
arguments. Following Causey (1969) they consider the first in some 
detail (1971, Section 10.10.2), obtaining the result that each rational 
family of similar systems satisfies a dimensionally invariant law [ 11. 
Bu? they notice (1971, p. 512) that their result does not explain the DI 
of physical laws like eqn. (1) which describe a unique system (the uni- 
verse). Therefore, this argument, while covering a lot of ground, is 
hardly decisive. 

Again following Causey, Krantz et al. point out that the second argu- 
ment is even weaker. This argument asserts that the fundamental equa- 
tions of physics are DI, whence correct deductions from them must also 
be DI - thus accounting at most for the dimensional invariance of 
derived but not fundamental laws. This argument does, however, justify 
most of the applications of dimensional analysis; and with the first it 
greatly reduces the size of the puzzle. 

The third argument, “it couldn’t be otherwise”, is based on the 
undoubted fact that the choice of units is arbitrary and the plausible 
but (to some) questionable assumption that correct descriptions of phe- 
nomena do not depend on arbitrary choices. Krantz, Lute, Suppes, and 
Tversky characterize this argument as an assertion of the belief that, if 
a satisfactory general definition of a physical law could be stated, it 
would imply DI (1971, p. 505). 

This paper, without attempting a general definition of physical laws, 
offers two supports for the third argument. Both are undoubtedly 
known to many workers in the field but one of them has never to my 
knowledge been published. If they are somewhat pedestrian and com- 
monsensical they nevertheless go beyond mere assertion, and enable us 
to see more clearly the implicit assumptions on which the “it could? 
be otherwise” argument is based. One support applies in the case of the 
empirical, and the other in the case of the numerical, interpretation of 
laws. If they are correct they push the problem back to a more funda- 
mental level and thus reduce the puzzle by another small increment. 
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II. Two Interpretations of Laws 

Let X be a set (e.g. of steel rods) on which are defined rn weak order- 
ings S 1, . . . . Lrn determined by empirical comparisons (e.g. laying two 
elements of X side-by-side or placing them in opposite balance pans). 
Let ol, . . . . on, be empirical concatenations defined on X (e.g. laying 
two elements end-to-end or placing them in the same balance pan) such 
that for each j = 1, . . . . m and all x, y, z, E X, 

xoi y E X (closure) 

xoj (.Vojz) = (xoiy)oiz (associativity). 

Thus we have m ordered additive semigroups Gi = (X, Si, oi), each asso- 
ciated with a different empirical property of the elements of X (e.g. 
length or mass). The semigroups are defined on a single underlying set 
X, on the elements of which the empirical comparisons and operations 
are performed; but it is convenient, and common, to speak as if we 
were comparing or adding manifestations of a property - to say, for 
example, that x o1 p’ is the sum of two lengths, instead of the more 
accurate, “x o1 JJ is the concatenation of two elements with respect to 
length”. We can then think of each semigroup as being associated with 
a different set (e.g. the “set of lengths”); this is permissible when we fix 
our attention on the properties rather than the elements themselves. We 
thus obtain HZ sets Xi E {xi, yi,~ . ..}. each being a property and the ele- 
ments of which are the manifestations of that property in the underly- 
ing set X [ 21. With xj < yi meaning x <j J and xj + yj meaning x oj y, 

each Xj has the structure of an ordered additive semigroup. Note that 
Xj + .vk is not defined for i f k. 

We can introduce the definition 2x, E xi + xi and apply it recursively. 
Thus if there is a Yj equivalent (under the ordering Sj) to xj + xj + xj we 
can write yi = 3xj, and more generally, yj = axj, where CI is a real num- 
ber. We can also define differences, products, exponents, and sequences 
in each Xj (Whitney, 1968), and from the interval topology determined 
by ,Si we get the notions of convergence and continuity. 

There are several ways to define a multiplication on XI u . . . U X,. 
Suppose ui < xi for all xi E Xi - (ui } ; then we can define uj*uk as the 
unique element of X that is minimal with respect to both Li and <-k. 
Writing Xj = OjUj for all Xj E Xj and all j = 1, . . . . HI we get xj*yk = 
@j”k(ffj*ffk), and * is a (multiplicative) commutative semigroup opera- 
tion on X1 U . . . U X,. For other approaches see Kurth (1965), Quade 
(1967), and Whitney (1968), who also provide the details that permit 
x, u . . . u X, to be organized into a multiplicative vector space. Thus 



many of the familiar mathematical operations and concepts are appli- 
cable to empirical properties directly, not just through the medium of 
measurement. 

If the additive semigroup Gi has certain additional structure (for 
which see Krantz et al., 1971), it is homomorphic to the real numbers 
under a mapping /zi (one of infinitely many such), and hi(x) is the jth 
“property number” (e.g. length number, mass number) of the element 
x. To construct such a homomorphism is to measure the ith property 
(or, alternatively, to measure an element with respect to that property). 

Armed with these notions we can distinguish between two interpreta- 
tions of scientific laws. The interpretations ultimately come down to 
the same thing but intuitively they seem to be different, and they sug- 
gest different explanations of the DI principle. In the empirical inter- 
pret‘gtion a law is a functional relation between empirical properties, 
not numbers. A numerical expression of the law, however convenient it 
might be for calculating and reasoning, merely copies the fundamental 
relation between properties. The mathematical operations that can be 
performed on the property numbers are those and only those that can 
be performed on the properties themselves. (Please note that we use 
“empirical” in antithesis to “numerical”, not “theoretical”. In fact 
many of the empirical properties can be determined only by theoretical 
deductions, not observations - e.g. the mass of an electron, the utility 
of a commodity.) 

In the numerical interpretation a law is a relation between numbers. 
The numbers are of two .kinds, “dimensional” (say 3 inches) and “di- 
mensionless” (say 3); but this distinction is only a shorthand way of 
keeping track of which numbers are measures and which are not; all the 
numbers are in fact real or complex. Two kinds of mapping occur - 
properties into numbers (the measurements) and numbers into numbers 
(the law). Once the numbers come into the picture they take over, as it 
were; operations on them are in no way restricted by operations per- 
mitted on properties. 

In the numerical interpretation eqn. (1) is a mapping from R* into 
R’ : If the energy and mass of a particle and the velocity of light are 
represented by a coherent system of units then the energy number is 
proportional to the mass number, and the constant of proportionality is 
the square of the velocity number of light. In the empirical interpreta- 
tion eqn. (1) is a mapping from Xi X Xk into Xi, where Xi, Xk, and Xi 
are respectively the mass, velocity, and energy semigroups: Energy is 
proportional to mass, and the constant of proportionality is the square 
of the velocity of light. 

The interpretations are equivalent, as shown by the following dia- 
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gram. (LE is the law empirically interpreted, LN the law numerically 
interpreted, and lz and E are measurement homomorphisms. /I-’ exists 
(in the absence of measurement error) because only one energy is asso- 
ciated with a given energy number as measured on a given scale.) But 
this equivalence does not prevent a difference of opinion about the 
legitimacy of operations on numbers. 

h-’ 

h 

LN 

) R’ 

III. The Empirical Interpretation 

The empirical interpretation leads to a positive explanation of DI: 
“Like can only equal like”. A mass can only equal another mass, a 
length another length, a density another density, etc. This proposition 
can be split into two parts, first that each property is an additive semi- 
group and second that the numerical expression of a law takes the form 
of an explicit function. The first says that if Xi + “vj exists it belongs to 
the same additive semigroup as xi and yi, meaning in particular that 
xi and yi belong to the same semigroup and are thus manifestations of 
the same property. Hence the property numbers I+(x) and IriCj) can be 
added if and only if they represent the same property. It follows that 
each law expressed as a sum of terms, e.g. eqn. (2), is dimensionally 
homogeneous (each term has the same dimensions); and since dimen- 
sional homogeneity (DH) implies DI, the law is DI [ 31. 

The. first part thus recognizes a difference between the algebra of 
numbers and the algebra of properties. If Wi, Xi, J’~, and zk are numbers 
then wj = xj and yk = zk imply wi + .Yk = Xj + zk; but if they are mani- 
festations of properties then wj + J ‘k is not even defined. Under the 
empirical interpretation Bridgman’s example (193 1, p. 42), 

v = gt 

s = gt*/2 1 
+ v+s=gt(l + t/2), (4) 

for many years a source of worry to students of dimensional analysis, 
is an improper application of numerical algebra to empirical properties 
[4]. Similarly, 

E - plql = me* + C;piqi, (5) 
derived from eqns. (1) and (2), would not follow from permissible 



80 

operations in the algebra of properties [ 51. 
The second part claims that each law expressed in the numerical 

form 

ah,(x), .--, h,(x)1 = 0 

implicitly defines at least one mapping, say 

(6) 

h,(x) = f[h,(x), ***, Mx)l . (7) 

Then, though the first part does not reach eqn. (6), which need not be 
the sum of a number of terms and so need not be DH, in combination 
with the second part it reaches eqn. (6) through eqn. (7), the left and 
right sides of which must represent the same property. The second part 
must be true if the empirical interpretation is valid, as the hallmarks of 
that interpretation are that a law maps Xi X . . . X X,-i X Xi+i X . . . X 
X, into Xj and that valid numerical expressions only copy the more 
fundamental relations between properties. 

The question of the validity of the empirical interpretation is beyond 
our scope; but we see that it is a sufficient condition for the “it 
couldn’t be otherwise” argument. 

IV. The Numerical Interpretation 

The numerical interpretation suggests a norrnative justification for 
DI: Without DI we could not know what the law says. 

In this section we interpret eqns. (l)-(5) as numerical equations and 
the variables as numbers. It is convenient to call the variables by the 
names of the properties they represent, e.g. to call E “energy” instead 
of the “energy number”. On the numerical interpretation eqns. (4) and 
(5) are perfectly valid expressions as all their variables are numbers 
(members of the same additive semigroup); and they are moreover true, 
as they follow from true laws. They are not DH, but they are DI. 
Changing the time unit in eqn. (4), for example, so that t is replaced by 
at, we obtain 

s+v/a=(l i-at/2)gt/a, a>O, (4a) 

which holds for all values of u, s, g, and t satisfying eqn. (4) [ 61. DH is 
sufficient, but not necessary for DI. Hence the considerations of the 
preceding section are not only unavailable; because they are devoted 
to showing the DH of laws, which is not necessary for DI, they are also 
unavailing : “not DH” does not imply “not DI”. We want to see the 
consequences of “not DI”. 
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But the consequences are obvious. Whatever a law says, it says it by 
its form; if its form changes when units are changed its message changes 
too. Since there is no way to decide which set of units is “correct” there 
is no way to know what the law says [ 71. One or two examples should 
make this clear; but first, some additional notation. 

Suppose YZ numbers x1, . . . . xn are related by a law. Let x = (xi, . . . . 
x,) and let T: R” + R” denote the transformation of the numbers that 
results from a change in units of measurement. In the simplest case, 
where the numbers are ratio scale measures, T is a linear transformation 
with a positive-definite diagonal matrix, the number of independent 
diagonal elements of which depend on the number of variables and the 
number of fundamental dimensions. For example, suppose x1 is energy, 
with dimensions ML*T-*, x2 is mass, with dimension M, and x3 is the 
velocity of light, with dimension LT- ’ ; division of the mass unit by a, 
the length unit by b, and the time unit by k- transforms (x1, x2, x3) into 

and T has the matrix 

I 
0 a 0 

0 0; 

, a, b, h- positive. 

A transformation of this kind, where the diagonal elements are limited 
only in the two respects of being positive and reflecting the dimensions 
of the variables, is called permissible. 

For a law stated implicitly by eqn. (6) dimensional invariance is 
expressed as 

F(x) = 0 iff I;[ T(x)] = 0 for all permissible T. (8) 

Now suppose a law lacked DI, e.g. suppose that, contrary to eqn. (l), 

E=cm*. (9) 

(9) is certainly true when the units of mass, length, and time are chosen 
so that m = c; it is then a true equation in numbers; but it is a false law. 
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It implies 

dE 
dm = 2cm = a function of m , 

where eqn. (1) implies 

dE 
z= c2 = a constant. 

(10) 

In this case a dynamical experiment could confirm the falsity of eqn. 
(10) and thence of eqn. (9). But dynamical experiments are not always 
feasible, especially in social science. It is therefore legitimate to assume 
them impossible in the present case. A physicist could still refute eqn. 
(9), by showing that it implies the wrong dimensional structure for 
energy (M2LT-l instead of ML2F2), but this refutation assumes that 
laws are DH and therefore DI. As we are trying to see the consequences 
of “not DI” we cannot use the dimensional argument on eqn. (9). 

Let us divide the mass unit by a, so that a mass formerly measured as 
x2 becomes ax2, and an energy that was x1 becomes axl. Eqn. (9) no 
longer holds - immediate proof, to a believer in DI, that it is wrong. A 
nonbeliever would merely change the form of the expression to accom- 
modate the changed measurements. Thus if in the initial units 

x1 = 27, x2 = 3, x3 = 3, i.e.x = (27,3, 3), 

and we halve the mass unit so that a = 2. whence 

T(x) = (54,6, 31, 

we must find a new functional form G such that 

G[T(x)] = 0; 

e.g., 
E=m(m +c). (11) 

Eqn. (11) fits the data and is precisely as good a law as eqn. (9), but it 
has different implications. We don’t know which set of implications to 
believe - i.e. we don’t know what the law says. 

If it should be objected that no choice between the implications is 
necessary, that each set of units carries its own implications which must 
only be kept straight, we can point to the existence of an infinite num- 
ber of sets of units and hence an infinite number of differing implica- 
tions which we can’t examine: how can we know what the law says 
[81? This objection clearly falls of its own weight. 
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The position is even clearer when a law cannot be directly tested by 
observation. Walras’ Law eqn. (2), which holds for the entire economic 
system, can only in principle be tested directly, even in a static sense. 
Suppose, therefore, that instead of eqn. (2) Walras’ Law were to assert 
eqn. (3). As we noted above, eqn. (3) holds in general economic equi- 
librium, and by a suitable choice of units it can be made to hold in a 
particular disequilibrium too; but it won’t hold in that disequilibrium 
under all permissible transformations. Thus dividing the unit of the ith 
commodity by ai gives 

(12) 

which will not hold in the same disequilibrium state as eqn. (3). To 
maintain the truth of eqn. (3) we must change its form upon changing 
units of measurement. Since it is the form of the relation that expresses 
the law, we have to ask: What is the law? Is it eqn. (3) or (12)? 

In sum, there is no sense in speaking of “the” law when it lacks DI. 
There are an infinite number of laws, generally contradictory, each 
holding in its own set of units, and carrying its own set of implications. 
Such “laws” are no help in understanding the world. 

DI, on the other hand, is a help, not directly in understanding the 
world, but indirectly in showing up false ideas. Perhaps the best exam- 
ple of a positive use of this aid is Georgescu-Roegen’s examination of 
the Marxian “proof” of the eventual breakdown of capitalism (Geor- 
gescu-Roegen, 1960). The proof depends, in part, on the following 
relation : 

s=c+l+S 
dt 

(13) 

where S is surplus value, C is consumption expenditures of capitalists, 
I is investment in variable and fixed capital, and t is time [93. Geor- 
gescu-Roegen criticizes this equation on the empirical interpretation: 
“As long as the letters in that formula stand for measurable material 
concepts and not for some Hegelian ideals, [C and dC/dt] cannot be 
added, any more than can total and average cost, for instance” (1960, 
p. 299). But the formula is just as meaningless on the numerical inter- 
pretation. S, C, and I are flows, with the dimensions money/time; if we 
divide the time unit by a we transform eqn. (13) into 

s “,f,-! E -= 
a2 dt a a a 

(14) 

which is inconsistent with eqn. (13). If eqn. (13) were true its form 
would have to be changed upon changing units; the new form would 
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say something different from eqn. (13). Which is correct? Marxian 
economics provides no answer, and indeed there is none. 

DI helps in other ways as well. It acts as a restriction on the possible 
forms of laws and as such saves useless effort. It is like the laws of 
logic, which relieve us of the need to consider as possibly true descrip- 
tions of the world all possible statements that can be made. It thus acts 
to filter out obvious absurdities like eqns. (9), (1 I), (12), (13), and 
(14), allowing us to direct attention to more promising hypotheses. 
And a failure of DI, like a failure of the laws of logic, would remove all 
means of distinguishing between truth and falsehood, causing discourse 
- there could hardly be dialogue - to descend into solipsism. Is my 
proposed law refuted by ovservations? Never mind; I will simply change 
units until the law fits and dare you to prove me wrong. For if my law 
lacks DI, and if it is contradicted when I use a particular set of units, 
I can still make it fit the data as expressed in some set of units: If when 
changing units I can change the form of the law to fit the measure- 
ments, then I can choose units that give measurements which will fit 
the law. 

Thus the normative justification for DI is that its absence would 
make quantitative science impossible. 

V. On Definitions and Hypotheses 

If the arguments of the preceding two sections are correct they apply 
to definitions and provisional hypotheses no less than to well-estab- 
lished laws. Bridgman (1931, Ch. 2) used the principle of dimensional 
invariance to explain why the “secondary quantities” of physics, e.g. 
density, are always defined as products of powers of the “primary 
quantities”, e.g. mass and length. His demonstration was limited to the 
case where all the quantities are ratio scales; it was subsequently 
extended, with new results, to all the well-known scale types by Lute 
(1959) and Osborne (1970). The scale types and dimensions of the pri- 
mary quantities place restrictions on the possible ways in which sec- 
ondary quantities can be defined, and the restrictions are well-under- 
stood (they are summarized in Table 1 of Osborne, 1970). For exam- 
ple, an ordinal secondary quantity can be defined as a function of two 
or more primary quantities if and only if the latter are extensive quan- 
tities. 

Nevertheless, the DI principle is sometimes violated - even by 
Samuelson, who more than anyone has acquainted the economics pro- 
fession with the principle of invariance [ 101 (and Samuelson’s errors 
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tend to become doctrine). In his discussion of the “social welfare func- 
tion “, a secondary quantity W(s) defined for state s as a function of the 
ordinal utility measures U&Y) of 12 individuals, 

W(s) = F[zl,(s), .-., 4z(s>l, 
Samuelson says: 

(15) 

But the welfare function is itself only ordinally determinable so that there are an 
infinity of equally good indicators [i.e. ordinal measures] of it which can be used. 
Thus, if one of these is written as [(15)] and if we were to change from one set of 
. . . indexes of individual utility to another set [(ur, . . . . u,,)], we should simply 
change the form of the function F so as to leave all social decisions invariant (1947, 
p.228) [ll]. 

But this is mistaken. Changing the form of the function to make its 
ordering of social states conform, in a new set of individual utility 
units, to its ordering in the old set, amounts to prejudging the ordering. 
For if we can do that we can always find a form for the function and a 
set of utility units that yields any preassigned ordering to the states, 
regardless of individual preferences. The concept of social welfare then 
becomes purely private, and no amount of mathematical juggling can 
give it the least bit of objectivity. 

Provisional hypotheses, too, must be expressed in dimensionally 
invariant form, or else they become subject to the kind of solipsistic 
“verification” noted above. But it is already obvious that the logical 
difference between hypotheses and laws is only one of degree, a matter 
of tests successfully passed; they are surely subject to the same rules of 
discourse. Thus Lute’s proposal (1959, pp. 84-85) that DI be regarded 
as a ,principle of theory construction is wholly unexceptional, and his 
retraction (1962) in the face of criticism by Rozeboom (1962) unwar- 
ranted [ 121. 

VI. A Note on Dimensional Constants 

It is obvious that any relation can be made dimensionally invariant, 
even dimensionally homogeneous, by inserting enough dimensional con- 
stants. Eqn. (13) could be purified in this way by sticking a coefficient, 
of dimension time, on dC/dt. This seems to take the cutting edge off 
the principle of dimensional invariance. 

It is true that the indiscriminate use of dimensional constants is not 
a way around the force of the principle of dimensional invariance in the 
case of secondary quantities (definitions). For example, suppose the 
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social welfare function were defined as 

W(S) = ZXy ki Ui(S) (16) 

where ki is the weight given the utility of the ith individual in the com- 
putation of social welfare. By giving ki the dimensions welfare/utilityi 
we make eqn. (16) dimensionally invariant. But then consider the par- 
ticular case of a “democratic” social welfare function, i.e. kl = . . . = k,. 
If we multiply the unit of the first person’s utility by 3 and keep all 
other units unchanged the system of units is still coherent, for unless 
tastes are identical the utilities are not interpersonally comparable; but 
we must increase kl to 3kl, and the first person’s weight in the social 
welfare computation will then increase threefold. It is true that the 
numbers klul and 3klul are equal (ui = u1/3) but that is irrelevant; the 
second unit chosen could equally well have been chosen instead of the 
old one for the expression (15) [ 131. In other words there is no sense in 
speaking of equal weights, or indeed of any particular scheme of 
weights, in summed weighted values of unlike quantities. This proposi- 
tion extends immediately to all mathematical forms of the definitions 
of secondary quantities. 

But the situation appears to be different in the case of laws. In this 
case we are not inventing new quantities but trying to discover the rela- 
tion between given ones, and there is no logical reason why such rela- 
tions are not full of dimensional constants. 

Bridgman (193 1, Ch. 5) has argued, convincingly in my view, if not 
completely rigorously, that the number of dimensional constants in a 
derived relation cannot exceed the number in the fundamental relations 
from which it is derived, and that, in turn, the number of dimensional 
constants in a fundamental relation cannot exceed the number of inde- 
pendent variables which it relates. This result is most valuable in those 
cases - rare in social science - where we know the fundamental rela- 
tions. It is also helpful in some cases where we don’t know the form of 
the underlying relations but do know what variables they relate. For 
example, an individual’s demand x1 for commodity 1 is a function of 
his income y and the prices pi of all commodities (i = 1, . . . . n); this 
function is derived from two fundamental relations, the utility function 

24 = 461, ..-, x,1 (17) 

and the income constraint 

E~piXi=y. (18) 

The constraint has no dimensional constants, the utility function at 
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most y1 (if Bridgman is correct); hence the demand function 

X 1 = NPl, .a.> Pn9 Y), (19) 

which is derived by maximizing eqn. (17) subject to eqn. (1 S), has at 
most n dimensional constants. We can conclude immediately that the 
linear form of eqn. (19), 

x lzcr+z‘:PiPi+YY 

cannot possibly be true, for it contains 12 + 2 dimensional constants (a, 
y, and pi for i = 1, . . . . n). 

But Bridgman’s argument does not help in all cases. Thus a competi- 
tive firm producing commodity 1 has a supply function 

.x1 = f(Pl), (20) 

determined by maximizing its profit P, 

(21) 

where ui is the rate of input of the ith factor of production and wi is its 
price, subject to the production function 

Xl =dv1, . . . . v,>. (22) 

The constraint has at most ty1 dimensional constants, the objective func- 
tion none; hence in principle eqn. (2) could have m dimensional con- 
stants, and none of its economically possible forms can be eliminated 
by dimensional reasoning. 

Thus the real force of the principle of dimensional invariance, and 
the usefulness of dimensional analysis, depends on the number of 
dimensional constants in the fundamental laws. In physical science no 
known fundamental law contains more than one such constant, or so it 
appears to a layman. Is this an inherent characteristic of physical 
science? of fundamental laws? of neither? We can only hope that the 
second is true. But on what lines should this question be approached? 

Notes 

1 Examples of similar systems are given by Bridgman (1931, Ch. 7). All simple 
pendulums are similar in the relation between length L and period T: T = kdL/g, 
where k is a dimensionless constant and g is the acceleration of gravity. Thus 
simple pendulums form a family of similar systems. And the family is rational 
because the dimensions of time and length occur in rational exponents. Bridg- 
man, incidentally, appears to have been the first to wonder why laws are dimen- 
sionally invariant (193 1, p. 13). 
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* The X; are usually called dimensions and their elements are called physical quan- 
tities. 

3 If an expression is DH a (coherent) change of units causes each of its terms to be 
multiplied by the same conversion factor, which therefore cancels out to leave the 
expression unchanged in form. 

4 Bridgman fails to distinguish clearly between the interpretations. In some places 
he uses a symbol “interchangeably for the quantity itself and for its numerical 
measure”, (193 1, p. 38) and in others only for the numerical measure (e.g. 193 1, 
p. 41). 

5 It is possible that a more satisfactory theory of physical quantities would distin- 
guish between zeroes. E-mc* is zero energy, X:)Ipiqi is zero net expenditure, Per- 
haps zero energy should be treated as a different thing from zero net expendi- 
ture. How this could be accomplished is not at all clear. 

6 The dimensions of u are length/time (i.e. LT-l) and those of g are length/(time)* 
(i.e. LT-*). As Bridgman notes (1931, p. 41), DI holds because eqn. (4a) is not 
the only relation between the variables. 

’ Some units are better than others for computations. That has nothing to do with 
the principle that, from a scientific standpoint, units of measurement can only 
be chosen arbitrarily. 

8 That an expression lacking DI has as many sets of implications as there are sets 
of measurement units, most of the sets of implications being contradictory, must 
be distinguished from the fact that a true law also has an infinite number of im- 
plications, all of which, however, are mutually consistent. And it must be distin- 
guished from the general problem of scientific inference - the inescapable prob- 
lem that an infinite number of hypotheses are consistent with a given set of data. 

9 Eqn. (13) is Georgescu-Roegen’s eqn. (3bis) in a different notation. 
lo See especially Constancy of the Marginal Utility of Income (Samuelson, 1942) 

and the section of the same title in Samuelson, 1947 (pp. 189-195). 
l1 Where the ellipsis occurs Samuelson has the word “cardinal”. However, he 

clearly is not assuming that utility is cardinally measurable; rather, he is working 
with ordinal utility but here as elsewhere calls the resulting numbers “cardinal 
indexes”, letting the word “index” indicate the ordinal (uniqueness up to 
increasing transformation) of the numbers, Samuelson did not, of course, have 
the advantage of the modern clarifications in the theory of measurement, and 
his largely confused discussion of the social welfare function (1947, pp. 219- 
228) suffers accordingly. Unfortunately it has formed the views of many econ- 
omists. 

l2 Rozeboom’s criticism amounted to this: Any hypothesis lacking DI can be given 
it by inserting enough dimensional constants. But this implicitly accepts the prin- 
ciple of DI. 

l3 Ordinal quantities do not, of course, have “units”, but for expositional con- 
venience we can speak of a change in units to mean a linear transformation, 
which is merely a special case of the increasing transformations up to which 
ordinal quantities are numerical. 
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